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Abstract We prove that a finite Trotter approximation to the averaged mean square distance
traveled by a particle in a disordered system on a lattice Z

d exhibits at most a diffusive
behavior in dimensions d ≥ 3 as long as the Fourier transform of the single-site probability,
μ̂, is in L2(R).

Keywords Anderson model · Random Schrödinger operators · Trotter product formula

1 Introduction

Localization has been a subject of high interest to mathematicians and physicists over the
past several decades. One of the most often studied quantities is the averaged mean square
distance traveled by a particle in initial state ψ up to time t . In a d-dimensional lattice Z

d ,
this quantity is defined as

rψ(t) :=
{

E

∑
x∈Zd

|x|2|[e−itHψ](x)|2
}1/2

, (1.1)

where E(·) is the expectation taken with respect to the probability configuration. The pre-
cise definitions of all constituents will be given in Sect. 2. For large t , if rψ(t) ∼ ct , we
say that the motion is ballistic, like that of a free particle; if rψ(t) ∼ c

√
t , we say that the

motion is diffusive, and if supt>0 rψ(t) is bounded, then we say that the wave packet is (phys-
ically) localized. The behavior of rψ(t) for large t is important in solid-state and condensed-
matter physics because it is connected to the conductivity of the system via Kubo’s formula
[22, 29].
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The study of localization started in 1958 when P.W. Anderson [4] first argued that suffi-
ciently large disorder essentially permits no diffusion to take place and halts the propagation
of a wave function through a random medium. In the context of electronic properties of
the system, the presence of sufficiently large disorder converts a good conductor to an in-
sulator. Since then, the study of localization or delocalization has been translated to many
mathematical formulations; see [6, 7, 17, 19, 23] and references therein. There are multiple
mathematical interpretations of localization, and thus, more than one approach to its study.
One commonly taken approach is known as a spectral approach, and it concerns the spec-
tral properties of the operator H. Specifically, in the spectral approach, localization, often
termed Anderson localization, occurs when H exhibits a dense pure point spectrum with
exponentially decaying eigenfunctions. Note that there are various definitions of localiza-
tion related to the spectral properties of H. See [23], for example, for precise definitions of
these variations. In addition, the spectral approach has been extended to study localization
in other domains such as Bethe lattice, trees, strips or half-planes, see [3, 7, 14, 24–26, 33]
and references therein for more details.

For historical notes, the pioneering work of mathematical localization in the spectral ap-
proach was done by the Russian school [7, 21, 30] who studied the spectral properties of
random Schrödinger operators in one dimension in 1970’s. However, the groundbreaking re-
sult in multidimensional localization was obtained in 1983, when J. Fröhlich and T. Spencer
proved exponential decay of the Green’s functions for large disorder and at fixed energy [7,
15, 16]. The exponential decay of the Green’s functions, which implies limt→∞

rψ (t)

t
= 0

for any wave function with energy localized around the fixed energy at time t = 0 and the
absence of an absolutely continuous spectrum (see notes at the end of Chap. IX in [7] and
reference therein), has essentially become a much sought property of H. Subsequently, most
work done in this approach has been about or related to the spectral properties of H.

In one dimension, there are presently many proofs [7, 15, 16, 34, 38] that Anderson
localization occurs for all disorder and at every energy. However, the techniques of these
proofs do not carry over to higher dimensions for arbitrary disorder. In dimension d = 2,
it is believed that H exhibits the same behavior as that in d = 1, but a proof is missing. In
particular, there has been no proof as to whether the eigenfunctions should decay exponen-
tially or polynomially for small disorder [7, 11]. For sufficiently large disorder or at extreme
energies near the edges of the spectrum σ(H0), Anderson localization has been proved in
arbitrary dimensions [2, 7, 15, 16, 18, 22, 27, 29, 36].

Another approach to study localization (or delocalization) is known as a dynamical ap-
proach, in which one is interested in a physics-related quantity like rψ(t). In this case, we
say that dynamical localization occurs if rψ(t) is bounded; otherwise, we say that dynam-
ical delocalization occurs. See [6, 8, 12, 13, 17] for variations of definitions of dynamical
localization. In this approach, very few results are known; see [1, 6, 17, 35] for some results
on quantities similar to rψ(t). In the large-disorder or extreme-energy regime, it has been
proved in [15, 16, 28] that the mean square distance is bounded uniformly in t with prob-
ability one. It is worth noting that the existence of dynamical delocalization and mobility
edge has been proved in a two dimensional random Landau model [19]. Furthermore, the
spectral approach and the dynamical approach are not necessarily equivalent; in particular,
spectral localization does not always imply dynamical localization [9].

Even though rψ(t) has direct connections to actual physical quantities such as conductiv-
ity of the system, it is relatively less-studied in a mathematical setting. The behavior of rψ(t)

at small disorder is still an open problem, and it is expected to have a diffusive behavior for
large t in dimensions d > 2.
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This article is organized as follows. In the upcoming Sect. 2, we state our problem, its
framework and the main result. In Sect. 3, we utilize the Fourier transform to reformulate
the problem at hand in terms of oscillatory integrals which allows us to do our estimates in
the momentum space. Section 4 is devoted to study oscillatory integrals and the properties
of the phases after taking the expectation Eω(·), with some generic estimates on oscillatory
integrals with two phases included in Appendix B. Finally, and most importantly, the proof
of the main result will be given in Sect. 5.

2 Statement of the Problem and the Main Result

A beginning step to show that rψ(t) displays a diffusive behavior for large t and for small
disorder in dimensions d > 2 is to investigate whether rψ(t) ≤ c

√
t for any disorder. Our

approach is employing the Trotter product formula to estimate the growth of rψ(t), without
invoking the spectral structure of H.

2.1 Anderson Model and Statement of the Problem

Let Ω = ×x∈Zd R denote a probability space equipped with the probability measure dP(ω) =∏
x∈Zd μ(dvx). For each ω ∈ Ω , let Vω be a random-potential multiplication operator on the

lattice Z
d defined as

(Vωϕ)(x) = vω(x)ϕ(x), (2.1)

where {vω(x)}x∈Zd is a collection of independent identically distributed (i.i.d.) random vari-
ables with the single-site probability distribution given by μ(dv). Let H0 denote a discrete
Laplace operator defined on �2(Zd) as

(H0ϕ)(x) := −
∑
|j |=1

ϕ(x + j). (2.2)

Then the Anderson model is a random self-adjoint Schrödinger operator Hω := H0 + Vω on
a Hilbert space H = �2(Zd).

Remark 1 Often the Anderson model is defined as Hω := H0 + λVω, where λ ∈ R is a
coupling constant representing a disorder strength. When proving the upper bound on rψ(t)

for arbitrary disorder is the main objective, it is usually set λ = 1 and assumed that the
single-site distribution has a bounded density μ ∈ L∞(R) ∩ L1(R), with ‖μ‖L1 = 1. In this
case, a disorder strength is defined in terms of ‖μ‖−1∞ .

Let X be a multiplication operator defined as

(Xϕ)(x) = xϕ(x) (2.3)

for ϕ ∈ D(X) ⊂ �2(Zd).

Definition 1 Define

p := i[H0,X], (2.4)

Xω(t) := eitHω Xe−itHω , (2.5)

pω(t) := eitHω pe−itHω . (2.6)
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Explicitly, the operator p is given by

(pϕ)(x) = −i
∑
|j |=1

jϕ(x + j). (2.7)

By definition, rψ(t) = {Eω‖Xω(t)ψ‖2}1/2, so our question is equivalent to whether

1

t
Eω‖Xω(t)ψ‖2 ≤ constant, (2.8)

for ψ ∈ D(X) and large t , where Eω(·) is the expected value taken with respect to dP(ω).

Remark 2 Observations

(i) In this article, the operators H0,p and X do not depend on a realization ω ∈ Ω , while
Vω,Hω,Xω(t) and pω(t) do. Often, we will suppress the ω dependence on these oper-
ators.

(ii) H0 and p are bounded operators on �2(Zd) with ‖H0‖ ≤ 2d and ‖p‖ ≤ √
2d , while X

is not. All of the operators mentioned above are self-adjoint on �2(Zd). In particular,
Xω(t) and pω(t) are also self-adjoint for each t ∈ R; and they are respectively called
the Heisenberg position and momentum operators.

(iii) If V is constant, then H and p commute; hence, the inequality (2.8) is trivially false.
It is also false when V is periodic [7].

(iv) Even though the operator X(t) is unbounded, its derivative p(t) is bounded by
√

2d

uniformly in t . Thus, we can write X(t) in an integral representation as

X(t) = X +
∫ t

0
p(s) ds, (2.9)

where the equality holds on the domain D(X) of X.

2.2 Trotter Product Theorem

A key ingredient in our analysis is the Trotter product theorem which states:

Theorem 2.1 Suppose A and B are self-adjoint operators on a Hilbert space H, and sup-
pose that A + B is self-adjoint (or essentially self-adjoint) on D = D(A) ∩ D(B). Then,

eit (A+B) = lim
N→∞

[
ei t

N
Aei t

N
B
]N

, (2.10)

where the limit is taken in the strong-topology.

Proof The proof of this well-known theorem can be found in, for example, [32]. �

To prove (2.8) via a Trotter product approximation, one naturally asks whether the corre-
sponding statement holds when U(t) := eitH is replaced by UN(t) := [ei t

N
Vei t

N
H0 ]N . This is

the main purpose and content of this article. Here, U∗(t) := e−itH is the adjoint of eitH, thus
will be replaced by U∗

N(t) := [e−i t
N

H0e−i t
N

V]N .
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Definition 2 (Trotter Product Approximations) Define

pN(t) := UN(t)pU∗
N(t), (2.11)

XN(t) := X +
∫ t

0
pN(s) ds. (2.12)

2.3 Main Result

Throughout this article, F and ˆ denote the Fourier transform, while both F−1 and ˇ denote
the inverse Fourier transform. The notation Q = ON(t) means that |Q| ≤ C(N)t , where the
N dependence of the coefficient is not determined. The main result proved in this report can
be stated as follows.

Proposition 1 (Main Result) Let d ≥ 3. Suppose the single-site probability distribution μ is
such that μ̌ ∈ L2(R). For any fixed but arbitrary N < ∞, let XN(t) denote the approximated
position operator defined in (2.12). Then, for large t ,

Eω‖XN(t)δ0‖2 = ON(t).

Remark 3 It should be noted that our technique also yields some bounds in dimensions
d = 1,2 which are worse than ON(t). See Corollary 7 in Appendix B.

Remark 4 The quantities ‖X(t)ψ‖2 and Eω‖X(t)ψ‖2 respectively denote the mean square
distance and the averaged mean square distance of a particle in an initial state ψ up to time t .
In a position space, one can intuitively expect that, for large N (e.g., N > 3), the particle
is experiencing many collisions. Between two collisions, the particle can move freely, but it
changes direction with each collision. This should result in many reflections, hence cancella-
tions from interference, giving rise to a diffusive net effect. The Trotter product approxima-
tion should capture this random-walk-like nature. Since X is unbounded, but p is bounded,
we have chosen to apply the Trotter product formula to p(t) because the convergence is
guaranteed. In addition, using the Newton’s equation before applying the Trotter product
formula to p(t) should give a better approximation. This follows because the p(t) approx-
imation takes into account interactions occurring at all times since there are integrals over
the time, rather than just those at N times with large intervals of free motion in between.

2.3.1 A Remark on Absolutely Continuous Spectrum

In the closing of this section, we remark that while our problem concerns the “fastest” com-
ponent of ψ , it is also interesting to consider the “slowest” component of ψ . In the following
lemma, we prove that when, for some p > 0, |x|p in the “slowest” component of ψ grows
faster than tα, with α > 1/2, then the spectral measure associated with ψ is absolutely con-
tinuous.

Lemma 1 Let 0 < p < ∞. Suppose that ψ ∈ D(|X|p) and that

∥∥∥ 1

〈X〉p e−itHψ

∥∥∥≤ c|t |−α,

for some c > 0 and α > 1/2. Then, the spectral measure μψ associated with ψ is absolutely
continuous.
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Proof By the spectral theorem, (ψ, e−itHψ) = ∫ e−itx dμψ(x) := μ̂ψ(t). Therefore, by the
Schwarz inequality, the assumptions imply that

|μ̂ψ(t)| ≤ ‖〈X〉pψ‖ · c|t |−α ≤ c̃|t |−α,

which implies that μ̂ψ ∈ L2(R). This means dμψ(x) = f (x)dx, for some f ∈ L2(dx).
Therefore, μψ is absolutely continuous with respect to Lebesgue measure. �

3 Equivalent Statements

3.1 Fourier Transform and Spectral Theory

The Fourier transform will be employed on a few occasions. With the spectral theory, we
will utilize the Fourier transform to represent e±itH0 on �2(Zd). On another occasion, the
Fourier transform comes up when we take the expectation Eω(·).

Definition 3 Let μ(dv) denote the single-site probability distribution. Then,

Eω(eitvω ) :=
∫

eitv dμ(v) := μ̌(t). (3.1)

Definition 4 For ϕ ∈ �2(Zd), we define the Fourier transform and its inverse by

ϕ̂(κ) :=
∑
x∈Zd

e−iκ·xϕ(x), (3.2)

ϕ(x) :=
∫

Td

eiκ·xϕ̂(κ) dκ, (3.3)

where dκ is understood as a normalized Lebesgue measure on a d-dimensional torus T
d :=

[−π,π]d .

It turns out that it is more convenient to work in the momentum space rather than in the
position space. The following two lemmas give representations of the considered operators
in the momentum space.

Lemma 2 In the Fourier representation, for ϕ ∈ �2(Zd),

F(H0ϕ)(κ) = ξ(κ)ϕ̂(κ), (3.4)

F(pϕ)(κ) = p(κ)ϕ̂(κ), (3.5)

with

ξ(κ) = −2
d∑

j=1

cos(κj ), (3.6)

p(κ) = 2
d∑

j=1

sin(κj )ej , (3.7)
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where κj denotes the j -th component of κ ∈ T
d , and ej denotes a standard unit vector in

the j -th direction in Z
d .

Proof The proof follows from the definitions. �

Remark 5 Adding the diagonal term 2dI to the free Hamiltonian H0 will not affect p(κ);
however, the free energy function ξ(κ) is translated to ξ̃ (κ) := 2d + ξ(κ).

Remark 6 ξ(κ) can be decomposed into a sum of d identical factors; that is, ξ(κ) =∑d

l=1 ξl(κl), where ξl(x) = −2 cos(x) is the free energy corresponding to the one-
dimensional problem.

Define G±t (κ) := e±itξ(κ). Then, by the spectral theorem,

F(e±itH0ψ)(κ) = G±t (κ)(Fψ)(κ) = G±t (κ)ψ̂(κ). (3.8)

Consequently, e±itH0ψ and pψ can be equivalently expressed as

(e±itH0ψ)(x) =
∫

Td

eiκ·xe±itξ(κ)ψ̂(κ) dκ; (3.9)

(pψ)(x) =
∫

Td

eiκ·x
p(κ)ψ̂(κ) dκ. (3.10)

3.2 Trotter Product Approximation

The finite Trotter approximations to U(t) and U∗(t) are given, respectively, by

UN(t) :=
[
ei t

N
Vei t

N
H0

]N
, (3.11)

U∗
N(t) :=

[
e−i t

N
H0e−i t

N
V
]N

. (3.12)

Applying (2.12) and the Fubini theorem, it follows that

r2
N,ψ(t) := Eω‖XN(t)ψ‖2

= ‖Xψ‖2 +
∫ t

0
Eω

[
(Xψ,pN(s)ψ)

]
ds +

∫ t

0
Eω

[
(pN(u)ψ,Xψ)

]
du

+
∫ t

0

∫ t

0
Eω

[
(ψ,pN(s) · pN(u)ψ)

]
dsdu, (3.13)

for each ψ ∈ D(X).

Remark 7 Since p is bounded,
∣∣∣∣
∫ t

0

∫ t

0
Eω

[
(ψ,pN(s) · pN(u)ψ)

]
dsdu

∣∣∣∣
≤ c2‖p‖2‖ψ‖2 + 2ct‖p‖2‖ψ‖2 +

∣∣∣∣
∫ t

c

∫ t

c

Eω

[
(ψ,pN(s) · pN(u)ψ)

]
dsdu

∣∣∣∣ , (3.14)

for any constant c > 0 and ψ ∈ �2(Zd).



1138 S. Suwanna

Remark 8 Since p(t) := s. limN→∞ pN(t),

Eω

(
(ψ,p(s) · p(u)ψ)

)
= Eω

(
lim

N→∞
(ψ,pN(s) · pN(u)ψ)

)

= lim
N→∞

Eω

(
(ψ,pN(s) · pN(u)ψ)

)
,

by Lebesgue’s dominated convergence theorem. As a result, for ψ ∈ D(X),

Eω‖X(t)ψ‖2 = lim
N→∞

Eω‖XN(t)ψ‖2. (3.15)

In accordance with (3.11) and (3.12), for each t ∈ R, let V(t) := eitV and W(t) := eitH0

denote two unitary groups, where V(t) is also a multiplication operator given by

(V(t)ψ)(x) = eitvω(x)ψ(x), (3.16)

for each x ∈ Z
d ,ω ∈ Ω and ψ ∈ �2(Zd). For each ψ ∈ �2(Zd), the Fourier transforms of

W(t)ψ and pψ are given, respectively, in (3.6) and (3.7); however, the Fourier transform of
eitvω(x) does not exist. For x = (x1, . . . , xd) ∈ Z

d , let ‖x‖ =∑d

j=1 |xj | denote a Z
d -norm of

x. For ε > 0 and t ∈ R, let Vε(t) denote a multiplication operator given by

(Vε(t)ψ)(x) := Vt(x)ψ(x)

where

Vt(x) := eitvω(x)e−ε‖x‖ (3.17)

is a function in �2(Zd)∩ �1(Zd) whose Fourier transform exists. Then, the Fourier transform
of Vε(t)ψ is given by

F(Vε(t)ψ)(κ) = F(Vtψ)(κ) =
∫

Td

V̂t (κ − η)ψ̂(η) dη. (3.18)

With s ′ = s/N and u′ = u/N , we can write

Eω

(
(pN(s)ψ,pN(u)ψ)

)
= lim

ε↓0
Eω

(
(ψ, [Vε(s

′)W(s ′)]N p[W(−s ′)Vε(−s ′)]N

× [Vε(u
′)W(u′)]N p[W(−u′)Vε(−u′)]Nψ)

)
. (3.19)

Remark 9

(i) Alternatively, one can first combine the two unitary groups U∗(s)U(u) in the middle
of the product p(s) · p(u) into just one unitary group, e.g. U(u − s), then apply the
Trotter product theorem to the latter. This approach has an advantage that there are fewer
convolutions when we apply the Fourier transform; see (3.20). However, it breaks the
symmetry of s and u, giving rise to a more difficult combinatoric structure, especially
for large N , when we take the expectation Eω(·). See Sect. 3.4.

(ii) One may apply the Trotter product theorem directly to X(t) given by (2.5) in the posi-
tion space. This leads one to study the sum of products of Bessel functions of varying
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orders (which depend on the distance between two lattice points at which the potential
terms V(t) are evaluated). We will see that, in our current setting, the approximated
expected value in (3.19) can be expressed in terms of oscillatory integrals, which in-
deed are equivalent to the sum of the products of the Bessel functions, but appear easier
to estimate than their counterparts in the position space. Moreover, the Trotter prod-
uct approximations directly to X(t) for N = 1 and N = 2 yield Eω‖XN(t)δ0‖2 grows
ballistically like t2, in contrast with those for p(t); see also Sect. 3.7.

Hereafter, we will compute the approximated expectation given by (3.19). To do that, we
need to isolate the potential terms from the free energy terms.

3.3 Expected Value in Momentum Space

Consider the approximated expected value Eω((ψ,pN(s) · pN(u)ψ)) in (3.19). Using con-
volution, the definition of Vt(x) in (3.17), and that the Fourier transform is an isometry on
�2(Zd), we derive the following expressions.

Lemma 3 Let ϕ,ψ denote vectors in �2(Zd), and let κj ∈ T
d , for j = 0,1,2, . . . .

(i) For any integer M ≥ 1,

F

(
[Vε(s)W(s)]Mϕ

)
(κm)

=
∫

Td

V̂s(κm − κm+1)Gs(κm+1)F
([Vε(s)W(s)]M−1ϕ

)
(κm+1) dκm+1

=
∫

(Td )M

[
m+M∏

j=m+1

Gs(κj )V̂s(κj−1 − κj )

]
(Fϕ)(κm+M)

m+M∏
j=m+1

dκj .

(ii) For any integer N ≥ 1,

(ψ,pN(s) · pN(u)ψ)

= (ψ, [Vε(s
′)W(s ′)]N p[W(−s ′)Vε(−s ′)]N

× [Vε(u
′)W(u′)]N p[W(−u′)Vε(−u′)]Nψ)

=
∫

(Td )4N+1

[
4N−1∏
j=1

j �=N,2N,3N

Gtj (κj )

]
p(κN) · p(κ3N)

[
4N∏
j=1

V̂tj (κj−1 − κj )

]

× ψ̂(κ0)ψ̂(κ4N)

4N∏
j=0

dκj , (3.20)

where

tj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s ′ if 1 ≤ j ≤ N,

−s ′ if N + 1 ≤ j ≤ 2N,

u′ if 2N + 1 ≤ j ≤ 3N,

−u′ if 3N + 1 ≤ j ≤ 4N.

(3.21)
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Proof The identity (i) follows from the definition of convolution and an induction argument.
By applying (i), we derive (ii) below.

(ψ,pN(s) · pN(u)ψ)

= (ψ, [Vε(s
′)W(s ′)]N p[W(−s ′)Vε(−s ′)]N · [Vε(u

′)W(u′)]N p[W(−u′)Vε(−u′)]Nψ)

=
∫

Td

ψ̂(κ0)F
[
[Vε(s

′)W(s ′)]N p[W(−s ′)Vε(−s ′)]N

× [Vε(u
′)W(u′)]N p[W(−u′)Vε(−u′)]Nψ

]
(κ0) dκ0

=
∫

(Td )N+1
ψ̂(κ0)

N∏
j=1

[
Gs′(κj )V̂s′(κj−1 − κj )

]
F

[
p[W(−s ′)Vε(−s ′)]N

× [Vε(u
′)W(u′)]N p[W(−u′)Vε(−u′)]Nψ

]
(κN)

N∏
j=0

dκj

=
∫

(Td )N+1
ψ̂(κ0)

N∏
j=1

[
Gs′(κj )V̂s′(κj−1 − κj )

]
p(κN)G−s′(κN)F

[
[Vε(−s ′)W(−s ′)]N−1

× Vε(−s ′) · [Vε(u
′)W(u′)]N p[W(−u′)Vε(−u′)]Nψ

]
(κN)

N∏
j=0

dκj

=
∫

(Td )2N

ψ̂(κ0)

N∏
j=1

[
Gs′(κj )V̂s′(κj−1 − κj )

]
p(κN)G−s′(κN)

×
2N−1∏

j=N+1

[
G−s′(κj )V̂−s′(κj−1 − κj )

]

× F

[
Vε(−s ′) · [Vε(u

′)W(u′)]N p[W(−u′)Vε(−u′)]Nψ
]
(κ2N−1)

2N−1∏
j=0

dκj

=
∫

(Td )2N+1
ψ̂(κ0)

N∏
j=1

[
Gs′(κj )V̂s′(κj−1 − κj )

]
p(κN)G−s′(κN)

×
2N−1∏

j=N+1

[
G−s′(κj )V̂−s′(κj−1 − κj )

]

× V̂−s′(κ2N−1 − κ2N) · F
[
[Vε(u

′)W(u′)]N p[W(−u′)Vε(−u′)]Nψ
]
(κ2N)

2N∏
j=0

dκj

=
∫

(Td )2N+1
ψ̂(κ0)

N−1∏
j=1

Gs′(κj )

2N−1∏
j=N+1

G−s′(κj )

N∏
j=1

V̂s′(κj−1 −κj )

2N∏
j=N+1

V̂−s′(κj−1 −κj )p(κN)
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× F

[
[Vε(u

′)W(u′)]N p[W(−u′)Vε(−u′)]Nψ
]
(κ2N)

2N∏
j=0

dκj

=
∫

(Td )4N+1
ψ̂(κ0)

N−1∏
j=1

Gs′(κj )

2N−1∏
j=N+1

G−s′(κj )

N∏
j=1

V̂s′(κj−1 − κj )

×
2N∏

j=N+1

V̂−s′(κj−1 − κj )p(κN)

3N−1∏
j=2N+1

Gu′(κj )

3N∏
j=2N+1

V̂u′(κj )p(κ3N)

4N−1∏
3N+1

G−u′(κj )

×
4N∏

j=3N+1

V̂−u′(κj )ψ̂(κ4N)

4N∏
j=0

dκj .

The resulting equation (3.20) is obtained by collecting the potential terms and the free energy
terms, while noting the definition of tj . �

We note that Gs′(κN),G−s′(κ2N),Gu′(κ3N) and G−u′(κ4N) are absent on the right-
hand side of (3.20) because Gs′(κN) and G−s′(κN) cancel each other, as do Gu′(κ3N) and
G−u′(κ3N), while G−s′(κ2N) and G−u′(κ4N) never appear. For compact notation, we define

Ψ (κN, κ3N) := p(κN) · p(κ3N) = 4
d∑

l=1

sin(κN,l) sin(κ3N,l), (3.22)

where κN,l is the l-th component of κN ∈ T
d . Moreover, let

F (N,κ) = 1

N

(
N−1∑
j=1

ξ(κj ) −
2N−1∑

j=N+1

ξ(κj )

)
, (3.23)

G(N,κ) = 1

N

(
3N−1∑

j=2N+1

ξ(κj ) −
4N−1∑

j=3N+1

ξ(κj )

)
, (3.24)

with κ = (κ0, κ1, . . . , κ4N), where κj ∈ T
d for each j = 0,1, . . . ,4N . Then,

4N−1∏
j=1

j �=N,2N,3N

Gtj (κj ) = eisF (N,κ)eiuG(N,κ). (3.25)

Whether or not Anderson localization is exhibited depends on the choice of the initial
state ψ and the strength of disorder, as earlier indicated. It should be emphasized that, even at
weak disorder, if ψ lies in the spectral subspace associated with band-edges, then Anderson
localization has been proved in the spectral approach [2, 7, 15, 16, 18, 22, 27, 29, 36]. For
large disorder or energies near the band edge, it has been shown that r2

ψ(t) is uniformly
bounded in t with probability one [15, 16, 28]. Generally, (1.1) is studied when the initial
wave function ψ is well localized in the space and energy support. In this work, we consider
the initial state ψ that is spectrally spread out and would like to capture the fast component
of rψ(t). For our purpose, we will take ψ = δ0. With the application of Lemma 3 and Fubini
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theorem, we obtain

Eω(δ0,pN(s) · pN(u)δ0) = lim
ε↓0

∫
(Td )4N+1

eisF (N,κ)eiuG(N,κ)Ψ (κN, κ3N)

× Eω

⎡
⎣ 4N∏

j=1

V̂tj (κj−1 − κj )

⎤
⎦ d4N+1κ . (3.26)

As a result, we obtain

r2
N,δ0

(t) := Eω‖XN(t)δ0‖2 =
∫ t

0

∫ t

0
lim
ε↓0

∫
(Td )4N+1

eisF (N,κ)eiuG(N,κ)Ψ (κN, κ3N)

× Eω

⎡
⎣ 4N∏

j=1

V̂tj (κj−1 − κj )

⎤
⎦ d4N+1κ dsdu. (3.27)

If V ≡ 0, then by (3.17), Vt(x) = e−ε‖x‖ independent of t . Thus, by Lemma 17,

‖XN(t)δ0‖2 =
∫ t

0

∫ t

0

∫
(Td )4N+1

eisF (N,κ)eiuG(N,κ)Ψ (κN, κ3N)

×
4N∏
j=1

δ(κj−1 − κj ) d4N+1κ dsdu

=
∫ t

0

∫ t

0

∫
Td

Ψ (κ0, κ0) dκ0dsdu

=
∫ t

0

∫ t

0

∫
Td

4
d∑

j=1

sin2(κ0,j )

d∏
j=1

dκ0,j

= (2d)t2 := ‖pδ0‖2t2,

independent of N . The same statement holds when V is any constant multiplication opera-
tor, consistent with the fact that, under this assumption, H and p commute, so ‖X(t)δ0‖2 =
‖pδ0‖2t2 trivially. In general, we must compute Eω[∏4N

j=1 V̂tj (κj−1 − κj )]. This task is com-
plicated by the fact that the terms in the product need not be independent. A basic idea is to
write the above product as the sum of products of independent potential terms. We follow
the approach of [8] and use the combinatoric structure described below to accomplish this
task.

3.4 Combinatorics

For a fixed but arbitrary N < ∞, let

S =
{

1,2, . . . ,4N − 1,4N
}
.

Definition 5 A partition π of the set S is a family of pairwise disjoint nonempty sets,
denoted by π = {S1, S2, . . . , Sm}, such that

⋃m

l=1 Sl = S.
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Definition 6 As in [8], π = {S1, S2, . . . , Sm} is called a partition of length m, and a subset Sl

is called a block of π . The length of π is often denoted by |π |, and the size, i.e. cardinality,
of a block Sl is denoted by |Sl|.

It is important that we consider only distinct partitions. To do this, we always order the
blocks Sl by their minimal elements σ(l) := min{q : q ∈ Sl}. For our purpose, we can also
order the elements in each block. For examples, π = {{1,2,3,4}} or π = {{1,4}, {2,3}}
when N = 1.

Definition 7 Two partitions π = {S1, S2, . . . , Sm} and π ′ = {S ′
1, S

′
2, . . . , S

′
m′ } are the same if

m = m′ and Sj = S ′
j for each 1 ≤ j ≤ m.

Definition 8 Let P be the collection of distinct partitions of the set S.

Definition 9 A partition π ′ = {S ′
1, . . . ,S

′
m′ } is a refinement of a partition π = {S1, S2, . . . ,Sm}

if (i) m′ > m, and (ii) each S ′
j , for 1 ≤ j ≤ m′, is a subset of some Sl , for 1 ≤ l ≤ m. In this

case, we say that π ′ is a subpartition of π and denote this relationship by π ′ ≺ π . Equiva-
lently, we say that π is a superpartition of π ′, which will be denoted by π � π ′.

Example 3.1 For N = 2, π1 = {{1,2}, {3,4}, {5,6,7,8}} is a subpartition of π =
{{1,2,3,4}, {5,6,7,8}}, while π2 = {{1,5}, {2,6,7,8}, {3,4}} is not.

Notation 1 We adopt the following notations:

ζj := κj−1 − κj for j = 0, . . . ,4N, with κ−1 = 0,

nS := {nj : j ∈ S},
δ(nS) :=

∑
x∈Zd

∏
j∈S

δx,nj
for each S ⊂ S,

μ̌(S) := μ̌

(∑
l∈S

tl

)
for each S ⊂ S, where tl is given by (3.21),

μ̌π (s, u) :=
m∏

l=1

μ̌(Sl) for π = {S1, S2, . . . , Sm}.

In words, δ(nS) is equal to one if all nj ’s are equal for all j ∈ S and zero otherwise. To be
precise with the subsets of π , we write π := {S1(π), S2(π), . . . , S|π |(π)}. With the above
notations, we can write

κj = −
j∑

l=0

ζl, (3.28)

Eω

⎡
⎣ 4N∏

j=1

V̂tj (κj−1 − κj )

⎤
⎦ = Eω

⎡
⎣ 4N∏

j=1

V̂tj (ζj )

⎤
⎦ . (3.29)
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Lemma 4 For each (n1,n2, . . . ,n4N) ∈ (Zd)4N ,

1 =
∑
π∈P

π={S1(π),...,S|π |(π)}

|π |∏
l=1

δ(nSl(π))
∏

1≤i<j≤|π |
(1 − δnSi (π),nSj (π)

), (3.30)

where Si(π) and Sj (π) are disjoint if i �= j .

Proof Let n1,n2, . . . ,n4N denote 4N lattice points in Z
d which can be the same or different,

and let S = {1, . . . ,4N}. We observe that each term in the sum on the right-hand side of
(3.30) is either zero or one. It suffices to prove that there is exactly one partition associated
with which the two products are both equal to one. To that end, we remark that such a
partition π is formed by putting all the indices (i.e., elements in S) which correspond to the
same lattice point into the same set. �

Lemma 5

Eω

⎧⎨
⎩

4N∏
j=1

V̂tj (ζj )

⎫⎬
⎭ =

∑
n1

. . .
∑
n4N

⎡
⎣ 4N∏

j=1

e−iζj ·nj e−ε‖nj ‖

⎤
⎦ ∑

π∈P
π={S1(π),...,S|π |(π)}

μ̌π (s, u)

×
|π |∏
l=1

δ(nSl (π))
∏

1≤i<j≤|π |
(1 − δnSi (π),nSj (π)

). (3.31)

Proof Using (3.30),

Eω

{
4N∏
j=1

V̂tj (ζj )

}
= Eω

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
∑

n1

. . .
∑
n4N︸ ︷︷ ︸

4N sums

[
4N∏
j=1

e−iζj ·nj eitj vω(nj )e−ε‖nj ‖
]
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=
∑

n1

. . .
∑
n4N

[
4N∏
j=1

e−iζj ·nj e−ε‖nj ‖
]

Eω

[
4N∏
j=1

eitj vω(nj )

]

=
∑

n1

. . .
∑
n4N

[
4N∏
j=1

e−iζj ·nj e−ε‖nj ‖
]

Eω

[
4N∏
j=1

eitj vω(nj )

×
∑
π∈P

π={S1(π),...,S|π |(π)}

|π |∏
l=1

δ(nSl(π))
∏

1≤i<j≤|π |
(1 − δnSi (π),nSj (π)

)

]

=
∑

n1

. . .
∑
n4N

⎡
⎣ 4N∏

j=1

e−iζj ·nj e−ε‖nj ‖

⎤
⎦

×
∑
π∈P

π={S1(π),...,S|π |(π)}

Eω

[ |π |∏
k=1

e
i(
∑

l∈Sk (π) tl )vω(nσ(l))

|π |∏
k=1

δ(nSk(π))
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×
∏

1≤i<j≤|π |
(1 − δnSi (π),nSj (π)

)

]

=
∑

n1

. . .
∑
n4N

⎡
⎣ 4N∏

j=1

e−iζj ·nj e−ε‖nj ‖

⎤
⎦
{ ∑

π∈P
π={S1(π),...,S|π |(π)}

|π |∏
k=1

μ̌
(
Sk(π)

)

×
|π |∏
k=1

δ(nSk(π))
∏

1≤i<j≤|π |
(1 − δnSi (π),nSj (π)

)

}
,

where the last equality follows from (3.1). �

Example 3.2 If all points in the potential terms are the same, i.e., π = {{1,2,3, . . . ,4N}} :=
{S1(π)}, then by the definition of tj in (3.21),

μ̌π (s, u) = μ̌(S1(π)) = μ̌

(
4N∑
j=1

tj

)
= μ̌(0) ≡ 1.

In this case, we do not get any decay from the potential terms. In particular, the contribution
from this partition to Eω‖XN(t)δ0‖2 (see (3.23), (3.24), and (3.27)) is given by

∫ t

0

∫ t

0
lim
ε↓0

∫
(Td )4N+1

eisF (N,κ)eiuG(N,κ)Ψ (κN, κ3N)

×
∑

n1,...,n4N

4N∏
j=1

e−iζj ·nj e−ε‖nj ‖δ(nS1(π)) d4N+1κ dsdu

=
∫ t

0

∫ t

0
lim
ε↓0

∫
(Td )4N+1

eisF (N,κ)eiuG(N,κ)Ψ (κN, κ3N)

×
∑

n

e−i(ζ1+...+ζ4N )·ne−4Nε‖n‖ d4N+1κ dsdu

=
∫ t

0

∫ t

0

∫
(Td )4N+1

eisF (N,κ)eiuG(N,κ)Ψ (κN, κ3N)δ(ζ1 + . . . + ζ4N)d4N+1κ dsdu

=
∫ t

0

∫ t

0

∫
(Td )4N+1

eisF (N,κ)eiuG(N,κ)Ψ (κN, κ3N)δ(κ0 − κ4N)d4N+1κ dsdu,

by Lemma 17. Since Ψ (κN, κ3N) in (3.22) is an odd function of κN and κ3N , it follows that
the last integral is identically zero; hence, this partition does not make any contribution to
Eω‖XN(t)δ0‖2.

On the other extreme, if all of the potential points are distinct, i.e., π = {{1},
{2}, . . . , {4N}}, then

∏
1≤i<j≤m

(1 − δnSi (π),nSj (π)
) = 1.
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Hence, by Lemma 17 and (3.31), a contribution from this partition to Eω‖XN(t)δ0‖2 is

∫ t

0

∫ t

0

∫
(Td )4N+1

eisF (N,κ)eiuG(N,κ)Ψ (κN, κ3N)|μ̌(s ′)|2N |μ̌(u′)|2N

4N∏
j=1

δ(κj−1 −κj )d
4N+1κ dsdu,

where F (N,κ), G(N,κ) and Ψ (κN, κ3N) are given in (3.23), (3.24) and (3.22), respectively.
After integrating over the delta functions, the contribution is precisely

(∫
Td

Ψ (κ0, κ0) dκ0

)∫ t

0

∫ t

0
|μ̌(s ′)|2N |μ̌(u′)|2N dsdu = ‖pδ0‖2N2

∣∣∣∣
∫ t/N

0
|μ̌(w)|2N dw

∣∣∣∣
2

.

From this we can explore assumptions on μ̌ such that the last integral is at worst ON(
√

t),
for large t . In this example, μ̂ ∈ L2(R) is sufficient.

3.5 Expansion

The finiteness of N allows us to expand the products of the delta functions on the right-hand
side of (3.31). We follow the approach of [8], but need to keep track of μ̌π (s, u). As in [8],
we observe that

δ(nSi (π))δ(nSj (π))δnSi (π),nSj (π)
= δ(nSi (π)∪Sj (π)). (3.32)

For this reason, we will call δnSi (π),nSj (π)
the link of Si(π) and Sj (π), and use it to expand

|π |∏
l=1

δ(nSl(π))
∏

1≤i<j≤|π |
(1 − δnSi (π),nSj (π)

). (3.33)

Lemma 6

∑
π∈P

μ̌π (s, u)

|π |∏
l=1

δ(nSl(π))
∏

1≤i<j≤|π |
(1 − δnSi (π),nSj (π)

) =
∑
π∈P

Ǔπ (s, u)

|π |∏
l=1

δ(nSl(π)), (3.34)

where

Ǔπ (s, u) =
∑

π ′ :π ′≺π

(−1)|π ′ |−|π |nπ,π ′ μ̌π ′(s, u), (3.35)

for some positive integer nπ ′,π .

Proof For a fixed partition π = {S1(π), S2(π), . . . , Sm(π)} ∈ P with |π | = m, consider

μ̌π (s, u)

m∏
l=1

δ(nSl(π))
∏

1≤i<j≤m

(1 − δnSi (π),nSj (π)
)
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on the left-hand side of (3.34). First, we will expand the second product of the delta func-
tions. For this, we note that the subsets Sl(π) (and their elements) are ordered so that

1 = nσ(1) < nσ(2) < . . . < nσ(m),

where σ(i) := min{q : q ∈ Si}. For 1 ≤ i < j ≤ m, let εij ∈ {0,1}, and let rij := δnSi (π),nSj (π)

denote a link between Si(π) and Sj (π). Let |ε| :=∑1≤i<j≤m εij . Then,

∏
1≤i<j≤m

(1 − δnSi (π),nSj (π)
) :=

∏
1≤i<j≤m

(1 − rij )

=
∑
{εij }

(−1)|ε| ∏
1≤i<j≤m

r
εij

ij ,

where the summation is taken over all possible configurations of {εij }. Note that there are
(m/2)(m − 1) terms in the last product; hence, there are 2m(m−1)/2 possible configurations
of {εij }. Moreover, each configuration determines a product of delta functions which carry
out the instruction how to “join” the subsets using

δ(nSi (π))δ(nSj (π))δnSi (π),nSj (π)
= δ(nSi (π)∪Sj (π)).

However, two products of delta functions can result in the same outcome. For instance,
r1,2r1,3 and r1,3r2,3 both “combine” subsets S1(π), S2(π) and S3(π) into a bigger set S1(π)∪
S2(π) ∪ S3(π). Then,

μ̌π (s, u)

m∏
l=1

δ(nSl(π))
∏

1≤i<j≤m

(1 − δnSi (π),nSj (π)
)

= μ̌π (s, u)

m∏
l=1

δ(nSl (π))
∑
{εij }

(−1)|ε| ∏
1≤i<j≤m

r
εij

ij

= μ̌π (s, u)

m∏
l=1

δ(nSl (π)) + μ̌π (s, u)
∑

{εij }\{0,0,..,0}
(−1)|ε|

m∏
l=1

δ(nSl (π))
∏

1≤i<j≤m

r
εij

ij ,

where the last summation does not include the configuration where all εij are zero.
Next, if π̃ is a superpartition of π , then there exists at least one configuration of {εij }

which “connects” π and π̃ . Also note that |ε| basically counts the number of links between
π and π̃ ; thus, |ε| = |π | − |π̃ |. Therefore, the last sum can be expressed as

μ̌π (s, u)
∑

π̃ :π̃�π
π̃ �=π

(−1)|π |−|π̃ |nπ̃,π

|π̃ |∏
l=1

δ(nSl (π̃)),

where nπ̃,π denotes the number of ways to “reconstruct” π̃ from π . As a result,

μ̌π (s, u)

m∏
l=1

δ(nSl(π))
∏

1≤i<j≤m

(1−δnSi (π),nSj (π)
) = μ̌π (s, u)

∑
π̃ :π̃�π

(−1)|π |−|π̃ |nπ̃,π

|π̃ |∏
l=1

δ(nSl (π̃)).

(3.36)
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Finally, the sum on the left-hand side of (3.34) can be written as

∑
π∈P

μ̌π (s, u)

|π |∏
l=1

δ(nSl(π))
∏

1≤i<j≤|π |
(1 − δnSi (π),nSj (π)

)

=
∑
π∈P

μ̌π (s, u)
∑

π̃ :π̃�π

(−1)|π |−|π̃ |nπ̃,π

|π̃ |∏
l=1

δ(nSl (π̃))

=
∑
π̃∈P

( ∑
π :π≺π̃

(−1)|π |−|π̃ |nπ̃,π μ̌π (s, u)

) |π̃ |∏
l=1

δ(nSl (π̃))

=
∑
π̃∈P

Ǔπ̃ (s, u)

|π̃ |∏
l=1

δ(nSl (π̃))

=
∑
π∈P

Ǔπ (s, u)

|π |∏
l=1

δ(nSl (π)),

where Ǔπ (s, u) is precisely as given in (3.35). �

Remark 10 We point out that, in (3.35), π may have a subpartition π ′ such that
μ̌π ′(s, u) ≡ 1. For example, π = {{1,2,3,4}} and π = {{1,2}, {3,4}} when N = 1. See
Example 3.3, Lemma 11, and Corollary 2.

Corollary 1

Eω

⎧⎨
⎩

4N∏
j=1

V̂tj (ζj )

⎫⎬
⎭ =

∑
n1

. . .
∑
n4N

⎡
⎣ 4N∏

j=1

e−iζj ·nj e−ε‖nj ‖

⎤
⎦

×
∑
π∈P

π={S1(π),...,S|π |(π)}

Ǔπ (s, u)

|π |∏
l=1

δ(nSl(π)), (3.37)

where Ǔπ (s, u) is given by (3.35).

Proof Combine results from Lemmas 5 and 6. �

Lemma 7 With ζj = κj−1 − κj ∈ T
d and κ = (κ0, . . . , κ4N),

Eω‖XN(t)δ0‖2 =
∫ t

0

∫ t

0

∑
π∈P

Ǔπ (s, u)

∫
(Td )4N+1

eisF (N,κ)eiuG(N,κ)Ψ (κN, κ3N)

×
|π |∏
l=1

δ

( ∑
j∈Sl (π)

ζj

)
d4N+1κ dsdu. (3.38)



Finite Trotter Approximation to the Averaged Mean Square Distance 1149

Proof By (3.27) and Corollary 1,

Eω‖XN(t)δ0‖2

=
∫ t

0

∫ t

0
lim
ε↓0

∫
(Td )4N+1

eisF (N,κ)eiuG(N,κ)Ψ (κN, κ3N)

× Eω

⎡
⎣ 4N∏

j=1

V̂tj (ζj )

⎤
⎦ d4N+1κ dsdu

=
∫ t

0

∫ t

0

∑
π∈P

Ǔπ (s, u) lim
ε↓0

∫
(Td )4N+1

eisF (N,κ)eiuG(N,κ)Ψ (κN, κ3N)

×
∑

n1

. . .
∑
n4N

⎡
⎣ 4N∏

j=1

e−iζj ·nj e−ε‖nj ‖
|π |∏
l=1

δ(nSl(π))

⎤
⎦ d4N+1κ dsdu

=
∫ t

0

∫ t

0

∑
π∈P

Ǔπ (s, u) lim
ε↓0

∫
(Td )4N+1

eisF (N,κ)eiuG(N,κ)Ψ (κN, κ3N)

×
|π |∏
l=1

(∑
nσ(l)

e
−inσ(l)·(

∑
j∈Sl (π) ζj )

e−ε|Sj (π)|‖nσ(l)‖
)

d4N+1κ dsdu

=
∫ t

0

∫ t

0

∑
π∈P

Ǔπ (s, u)

∫
(Td )4N+1

eisF (N,κ)eiuG(N,κ)Ψ (κN, κ3N)

×
|π |∏
l=1

δ
( ∑

j∈Sl (π)

ζj

)
d4N+1κ dsdu,

where the last equality holds by Lemma 17. �

Notation 2 We introduce the following convenient notations:

ζ := (ζ0, ζ1, . . . , ζ4N) := (ζ0, ζ �), (3.39)

ζ i := (ζ0,i , ζ1,i , . . . , ζ4N,i) := (ζ0,i , ζ �,i ), for 1 ≤ i ≤ d, (3.40)

Kπ(ζ �) :=
|π |∏
k=1

δ
( ∑

j∈Sk(π)

ζj

)
, (3.41)

K̃π (ζ �,i ) :=
|π |∏
k=1

δ
( ∑

j∈Sk(π)

ζj,i

)
, (3.42)

where ζj ∈ T
d , for each j = 0,1, . . . ,4N , and ζj,l is the l-component of ζj . Here, it should

be cautioned that ζ l is not ζl . In fact, for each l = 1, . . . , d , ζ l ∈ T
4N+1, and its n-th com-

ponent is (ζ l )n = ζn,l for n = 0, . . . ,4N . The arguments of the delta functions in (3.41)
are d-dimensional vectors, whereas those in (3.42) are one dimensional. Thus, Kπ(ζ �) and
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K̃π (ζ �,i ) are related by

Kπ(ζ �) =
d∏

i=1

K̃π (ζ �,i ).

When d = 1, so that ζj ∈ T for each 0 ≤ j ≤ 4N , we put ζ := ζ 1 = ζ .

We refer to Kπ(ζ �) as the integration kernel associated with π . For each partition π , the
arguments of the delta functions in Kπ(ζ �) define a homogeneous system of linear equations
in which each ζj , for 1 ≤ i ≤ 4N , appears exactly once with coefficient one, but ζ0 never
appears. Hence, each κj , for 1 ≤ j ≤ 4N − 1, appears exactly twice with opposite signs,
but κ0 appears once with a plus sign, and κ4N appears once with a minus sign. Though
they are interchangeable, we will work with ζ0, . . . , ζ4N ∈ T

d as our variables rather than
κ0, . . . , κ4N . For each π , there are d|π | constraint equations which define a subspace in
(Rd)4N+1. Because our underlying space is (Td)4N+1 rather than (Rd)4N+1, we say that two
sets of constraint equations are equivalent if they determine the same affine subspace of
(Rd)4N+1 modulo 2π .

With notations in (3.28) and (3.39), we can rewrite F (N,κ) in (3.23) and G(N,κ) in
(3.24) in terms of ζ as

F̃ (N, ζ ) = 1

N

(
N−1∑
j=1

ξ(ζ0 + ζ1 + . . . + ζj ) −
2N−1∑

j=N+1

ξ(ζ0 + ζ1 + . . . + ζj )

)
, (3.43)

G̃(N, ζ ) = 1

N

(
3N−1∑

j=2N+1

ξ(ζ0 + ζ1 + . . . + ζj ) −
4N−1∑

j=3N+1

ξ(ζ0 + ζ1 + . . . + ζj )

)
. (3.44)

Furthermore,

Ψ (κN, κ3N) = Ψ (−ζ0 − . . . − ζN ,−ζ0 − . . . − ζ3N)

= Ψ (ζ0 + . . . + ζN , ζ0 + . . . + ζ3N)

= 4
d∑

j=1

sin(ζ0,j + . . . + ζN,j ) sin(ζ0,j + . . . + ζ3N,j ). (3.45)

3.6 Equivalent Statements

Using (3.41) and (3.43)—(3.45), Eω‖XN(t)δ0‖2 in Lemma 7 can be equivalently expressed
as

Eω‖XN(t)δ0‖2 =
∑
π∈P

∫ t

0

∫ t

0
Ǔπ (s, u)

∫
(Td )4N+1

eisF̃ (N,ζ )eiuG̃(N,ζ )

× Ψ
(
ζ0 + ζ1 + . . . + ζN , ζ0 + ζ1 + . . . + ζ3N

)
Kπ(ζ �) dζ dsdu. (3.46)

From the definition of the free energy terms in Remark 6, both functions F̃ (N, ζ ) and
G̃(N, ζ ) can be separated into a sum of d terms, each of which corresponds to a one-
dimensional problem. That is,

F̃ (N, ζ ) =
d∑

l=1

fl(N, ζ l ),

G̃(N, ζ ) =
d∑

l=1

gl(N, ζ l ),
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where, for each l = 1, . . . , d ,

fl(N, ζ l ) = − 2

N

(
N−1∑
j=1

cos(ζ0,l + . . . + ζj,l) −
2N−1∑

j=N+1

cos(ζ0,l + . . . + ζj,l)

)
, (3.47)

gl(N, ζ l ) = − 2

N

(
3N−1∑

j=2N+1

cos(ζ0,l + . . . + ζj,l) −
4N−1∑

j=3N+1

cos(ζ0,l + . . . + ζj,l)

)
. (3.48)

Combined with (3.42), this implies that

Lemma 8∫
(Td )4N+1

eisF̃ (N,ζ )eiuG̃(N,ζ )Ψ (ζ0 + ζ1 + . . . + ζN , ζ0 + ζ1 + . . . + ζ3N)Kπ(ζ �) dζ

= (4d)Ξπ(s,u)
[
Λπ(s,u)

]d−1
, (3.49)

where

Ξπ(s,u) :=
∫

T4N+1
eisf1(N,ζ 1)eiug1(N,ζ 1) sin(ζ0,1 + ζ1,1 + . . . + ζN,1)

× sin(ζ0,1 + ζ1,1 + . . . + ζ3N,1)K̃π (ζ �,1) dζ 1, (3.50)

and

Λπ(s,u) :=
∫

T4N+1
eisf1(N,ζ 1)eiug1(N,ζ 1)K̃π (ζ �,1) dζ 1. (3.51)

Proof
∫

(Td )4N+1
eisF̃ (N,ζ )eiuG̃(N,ζ )Ψ (ζ0 + ζ1 + . . . + ζN , ζ0 + ζ1 + . . . + ζ3N)Kπ(ζ �) dζ dsdu

=
∫

(Td )4N+1
eisF̃ (N,ζ )eiuG̃(N,ζ )

[
4

d∑
l=1

sin(ζ0,l + ζ1,l + . . . + ζN,l)

× sin(ζ0,l + ζ1,l + . . . + ζ3N,l)

]
d∏

l=1

K̃π (ζ �,l)

d∏
l=1

dζ l ,

= 4
d∑

l=1

∫
(Td )4N+1

d∏
j=1

[
eisfj (N,ζ j )eiugj (N,ζ j )

]
sin(ζ0,l + ζ1,l + . . . + ζN,l)

× sin(ζ0,l + ζ1,l + . . . + ζ3N,l)

d∏
j=1

K̃π (ζ �,j )

d∏
j=1

dζ j

= 4
d∑

l=1

(∫
T4N+1

eisfl (N,ζ l )eiugl (N,ζ l ) sin(ζ0,l + ζ1,l + . . . + ζN,l)

× sin(ζ0,l + ζ1,l + . . . + ζ3N,l)K̃π (ζ �,l) dζ l

)
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×
d∏

q=1
q �=l

[∫
T4N+1

eisfq (N,ζ q )eiugq (N,ζ q )K̃π (ζ �,q) dζ q

]

:= 4d Ξπ(s,u)

d−1∏
l=1

Λπ,l(s, u),

where

Ξπ(s,u) :=
∫

T4N+1
eisf1(N,ζ 1)eiug1(N,ζ 1) sin(ζ0,1 + ζ1,1 + . . . + ζN,1)

× sin(ζ0,1 + ζ1,1 + . . . + ζ3N,1)K̃π (ζ �,1) dζ 1,

Λπ,l(s, u) :=
∫

T4N+1
eisfl (N,ζ l )eiugl (N,ζ l )K̃π (ζ �,l) dζ l .

Since all fl(N, ζ l ), respectively all gl(N, ζ l ), have the same structure, it follows that all
Λπ,l(s, u) are identical, hence

∏d−1
l=1 Λπ,i(s, u) = Λπ(s,u)d−1, which proves the lemma. �

Therefore, we can write Eω‖XN(t)δ0‖2 in (3.46) differently but equivalently as

Eω‖XN(t)δ0‖2 = (4d)
∑
π∈P

∫ t

0

∫ t

0
Ǔπ (s, u)Ξπ(s, u)

[
Λπ(s,u)

]d−1
dsdu. (3.52)

For each π ∈ P , we define the amplitude Aπ(t) and the free decay Γπ(t) of the wave
function corresponding to the partition π as

Aπ(t) :=
∫ t

0

∫ t

0

∫
(Td )4N+1

Ǔπ (s, u) eisF̃ (N,ζ )eiuG̃(N,ζ ) ×

× Ψ (ζ0 + ζ1 + . . . + ζN , ζ0 + ζ1 + . . . + ζ3N)Kπ(ζ �) dζ dsdu (3.53)

= (4d)

∫ t

0

∫ t

0
Ǔπ (s, u)Ξπ(s, u)

[
Λπ(s,u)

]d−1
dsdu, (3.54)

Γπ(t) :=
∫ t

0

∫ t

0

∫
(Td )4N+1

eisF̃ (N,ζ )eiuG̃(N,ζ )

× Ψ (ζ0 + ζ1 + . . . + ζN , ζ0 + ζ1 + . . . + ζ3N)Kπ(ζ �) dζ dsdu (3.55)

= (4d)

∫ t

0

∫ t

0
Ξπ(s,u)

[
Λπ(s,u)

]d−1
dsdu. (3.56)

Therefore, since N is finite, the proof of Proposition 1 is reduced to showing that
|Aπ(t)| = ON(t) for each π ∈ P when d ≥ 3 and μ̌ ∈ L2(R). This depends on the struc-
ture of π , i.e., the constraint equations are governed by Kπ(ζ �). Aπ(t) (resp. Γπ(t)) is an
oscillatory integral whose two phases are given as sums of cosines. Consequently, after
Kπ(ζ �) is integrated out, it is very difficult to explicitly describe the set of critical points,
from which one expects a main contribution to the leading term of Aπ(t) in (3.53) (resp.
that of Γπ(t) in (3.55)). We will consider Aπ(t) and Γπ(t) in details in Sect. 4. We close this
section with some examples of computations for small values of N .
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3.7 Trotter Product Approximations to p(t) for N = 1 and N = 2

Example 3.3 For N = 1, there are 15 partitions in P , see Table 1. For each π ∈ P , define

cπ (t) :=
∫ t

0

∫ t

0
|μ̌π (s, u)|dsdu.

Suppose μ̌ ∈ L2(R), then, for each π ∈ P , μ̌π (s, u) and the corresponding bound of cπ (t)

are listed in Table 1 below. When computing the upper bound for cπ (t), it is useful to note
that ‖μ̌‖∞ ≤ μ̌(0) = 1 and that, by the Schwarz inequality,

∫ a

0
|μ̌(x)|dx ≤ √

a‖μ̌‖2, (3.57)

for any a ≥ 0.
From Table 1, we learn that if π is such that

∑
j∈Sl (π) tj �≡ 0 for some block Sl(π)

of π , i.e., μ̌π (s, u) �≡ 1, then |cπ (t)| = O(t) as long as μ̌ ∈ L2(R). On the other hand,
if μ̌(s, u) ≡ 1, then we need to show that the oscillatory integral

Γπ(t) = (4d)

∫ t

0

∫ t

0
Ξπ(s,u)

[
Λπ(s,u)

]d−1
dsdu

cannot grow faster than O(t), for large t . In a couple of cases in this example, i.e.,
π1 = {{1,2,3,4}} and π2 = {{1,2}, {3,4}}, we can show that Ξπ(s,u) ≡ 0. Thus, these
two partitions yield Aπ(t) ≡ 0 and do not contribute to Eω‖XN(t)δ0‖2. For each remaining
partition π ∈ P \ {π1,π2}, we want to estimate Aπ(t). To that end, recall the definition of

Table 1 Example Case N = 1

Partitions Expectations Upper bound of cπ (t)

{1,2,3,4} μ̌π (s, u) = 1 t2

{1}{2,3,4} μ̌π (s, u) = μ̌(s)μ̌(−s) = |μ̌(s)|2 t · ‖μ̌‖2
2

{1,3,4}{2} μ̌π (s, u) = μ̌(−s)μ̌(s) = |μ̌(s)|2 t · ‖μ̌‖2
2

{1,2,4}{3} μ̌π (s, u) = μ̌(u)μ̌(−u) = |μ̌(u)|2 t · ‖μ̌‖2
2

{1,2,3}{4} μ̌π (s, u) = μ̌(−u)μ̌(u) = |μ̌(u)|2 t · ‖μ̌‖2
2

{1,2}{3,4} μ̌π (s, u) = 1 t2

{1,3}{2,4} μ̌π (s, u) = μ̌(s − u)μ̌(u − s) = |μ̌(s − u)|2 t · ‖μ̌‖2
2

{1,4}{2,3} μ̌π (s, u) = μ̌(u − s)μ̌(s − u) = |μ̌(s − u)|2 t · ‖μ̌‖2
2

{1}{2}{3,4} μ̌π (s, u) = μ̌(s)μ̌(−s) = |μ̌(s)|2 t · ‖μ̌‖2
2

{1}{2,4}{3} μ̌π (s, u) = μ̌(s)μ̌(u)μ̌(−s − u) t · ‖μ̌‖2
2

{1}{2,3}{4} μ̌π (s, u) = μ̌(s)μ̌(−u)μ̌(u − s) t · ‖μ̌‖2
2

{1,4}{2}{3} μ̌π (s, u) = μ̌(−s)μ̌(u)μ̌(s − u) t · ‖μ̌‖2
2

{1,3}{2}{4} μ̌π (s, u) = μ̌(−s)μ̌(−u)μ̌(s + u) t · ‖μ̌‖2
2

{1,2}{3}{4} μ̌π (s, u) = μ̌(u)μ̌(−u) = |μ̌(u)|2 t · ‖μ̌‖2
2

{1}{2}{3}{4} μ̌π (s, u) = μ̌(s)μ̌(−s)μ̌(u)μ̌(−u) = |μ̌(s)|2|μ̌(u)|2 ‖μ̌‖2
2‖μ̌‖2

2
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Ǔπ (s, u) in (3.35). If μ̌ ∈ L2(R), then there exist constants α > 0 and β > 0 such that

|Aπ(t)| ≤
∫ t

0

∫ t

0

∣∣Ǔπ (s, u)
∣∣dsdu ≤ α

∫ t

0

∫ t

0
|μ̌π (s, u)|dsdu ≤ βcπ(t) = O(t),

for each π ∈ P \{π1,π2}. Thus, for each π ∈ P when N = 1, |Aπ(t)| ≤ γπ t for some γπ ≥ 0,
provided μ̌ ∈ L2(R).

Example 3.4 Equation (3.52) suggests that we should first study the one-dimensional prob-
lem, in which case ξ(·) = −2 cos(·) by (3.6). Let N = 2 and suppose μ̌ ∈ L2(R). From
Example 3.3, if π is such that μ̌π (s, u) �≡ 1, then

∫ t

0

∫ t

0
|μ̌π (s, u)|dsdu ≤ ct,

for some constant c > 0. Hence, we need only consider partitions for which μ̌π (s, u) ≡ 1
and Ξπ(s,u) �≡ 0. For N = 2, there are only five candidates for such partitions (see
also Lemma 9); namely, π1 = {{1,3}, {2,4}, {5,7}, {6,8}}, π2 = {{1,3,5,7}, {2,4,6,8}},
π3 = {{1,3,5,7}, {2,4}, {6,8}}, π4 = {{1,3,6,8}, {2,4}, {5,7}} and π5 = {{1,3,6,8},
{2,4,5,7}}. For each of these partitions, we consider Ξπ(s,u) defined in (3.50). Define

I (t) :=
∫

T

e2t i cos(x) cos(x) dx.

Note that I (t) = iJ1(2t), where J1(·) is the Bessel function of the first kind of order one.
Obviously, I (−t) = Ī (t). For each y ∈ T, we observe that

∫
T

e2t i cos(x−y) sin(x) dx =
∫

T

e2t i cos(x) sin(x + y)dx = sin(y)I (t).

Then, for each of the five considered partitions above, we find that

Ξπ1(s, u) = Ξπ4(s, u) = Ξπ5(s, u) = 1

2
|I (s/2)|2|I (u/2)|2,

Ξπ2(s, u) = Ξπ3(s, u) = 0.

By the properties of Bessel functions (or equivalently by the stationary phase method [10]),

I (s) ≈ i(πs)−1/2 cos(2s − 3π/4),

for s � 1. Therefore, for each π ∈ P such that μ̌π (s, u) ≡ 1 and Ξπ(s,u) �≡ 0, we obtain

|Γπ(t)| ≤
∫ t

0

∫ t

0
|Ξπ(s,u)|dsdu ≤ Ct +

∫ t

c

∫ t

c

|Ξπ(s,u)|dsdu ≤ Ct + c[ln(t)]2 = O(t),

for large t , by Remark 7. Therefore, we can conclude that, for each π ∈ P (for N = 2),
|Aπ(t)| ≤ γπ t for some γπ ≥ 0, provided μ̌ ∈ L2(R).

Remark 11 Examples 3.3 and 3.4 show that Eω‖XN(t)δ0‖2 ≤ ct when N = 1,2 in any
dimensions provided that μ̌ ∈ L2(R). It is worth noticing in these two examples that we
obtain a rather good decay from Ξπ(s,u) whenever μ̌π (s, u) ≡ 1.
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4 Oscillatory Integrals and Properties of the Phases

Our approach to determine the leading-term behavior of r2
N,δ0

(t) := Eω‖XN(t)δ0‖2 leads us
to study an oscillatory integral whose overall phase is given by a linear combination of two
functions. While both (3.46) and (3.52) are useful to prove Proposition 1, it suffices to only
use (3.52). In terms of doing estimates, (3.46) allows us to first integrate with respect to s and
u, which suggests the importance of having a nonvanishing phase. On the other hand, (3.52)
permits us to study and estimate the oscillatory integrals Ξπ(s,u) in (3.50) and Λπ(s,u) in
(3.51) corresponding to the problem in one dimension for fixed s and u, and then integrate
with respect to s and u. In Appendix B, we state a result known as an extension of van de
Corput’s lemma [37] and modify it to our application. Then, we summarize some estimates
on oscillatory integrals with two generic phases. In this section, we investigate the properties
of the phases f1(N, ζ 1) and g1(N, ζ 1) after K̃π (ζ �,1) is integrated out and apply the results
in Appendix B to show that |Γπ(t)| = ON(t) for some collection of partitions.

To apply the statements in Corollary 7 in Appendix B to estimate Γπ(t) or Aπ(t), one
needs to show that the bound in (B.10) is satisfied when I(wt, vt) := Ξπ(wt, vt)Λπ(wt,

vt)d−1. We will show that for a collection of partitions π , |Γπ(t)| = ON(t) in dimensions
d ≥ 3 without any decay from the potential term Ǔπ (s, u). In the following, we will classify
these partitions and determine properties of the corresponding phases after Kπ(ζ �) has been
integrated out.

4.1 Integrating over Kπ(ζ �)

Definition 10 For a partition π = {S1(π), . . . , Sm(π)} ∈ P , we say that j ∈ {1, . . . ,4N} is
a maximal element of π if j is the greatest integer in some block Sk(π) of π . An integer
j ∈ {1, . . . ,4N} which is not a maximal element will be called a non-maximal element.

Definition 11 A variable, say ζj , corresponding to a maximal element j will be called a
maximal variable associated with π . Otherwise, ζj will be called a non-maximal variable.

Remark 12 Accordingly, we can also define a minimal element of π and a minimal vari-
able associated with π . By definition, every element in a singleton set is simultaneously a
maximal element and a minimal element.

To estimate the oscillatory integral in (3.46) (resp. in (3.50) or (3.51)), we first integrate
over the product of delta functions Kπ(ζ �) (resp. K̃π (ζ �,1) in (3.50) or (3.51)). One approach
to do this is as follows. First, we integrate over the delta functions corresponding to blocks
with one element; that is, if π contains of a block, say, S(π) = {j} for some j ∈ {1, . . . ,4N},
then, in (3.46), we integrate over the delta function δ(ζj ). Next, for blocks Sl(π) such that
|Sl(π)| > 1, we replace all of the maximal variables by the non-maximal ones. Alterna-
tively, we can also replace the minimal variables by the non-minimal ones. In the end, the
remaining integral is over T

d(4N+1−|π |) in (3.46) (resp. T
4N+1−|π | in (3.50) or (3.51)). Unless

otherwise stated, our convention is to replace each maximal variable of π by a linear com-
bination of the non-maximal variables corresponding to the same block. For instance, if π

contains a block S(π) = {1,N,2N,3N + 2}, then ζ3N+2 is replaced by −ζ1 − ζN − ζ2N . It
should be noted that ζ0 never appears in the delta functions, see (3.41); thus, by default, it
is always a non-maximal variable. On the other hand, ζ4N is always a maximal variable and
gets integrated out. After this process, the non-maximal variables ζj whose blocks contain
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more than one element remain independent, and are used as variables on which the phases
depend.

Let π ∈ P be fixed. In (3.46), the two phases F̃ (N, ζ ) and G̃(N, ζ ) are given by

F̃ (N, ζ ) = 1

N

(
N−1∑
j=1

ξ(ζ0 + ζ1 + . . . + ζj ) −
2N−1∑

j=N+1

ξ(ζ0 + ζ1 + . . . + ζj )

)
,

G̃(N, ζ ) = 1

N

(
3N−1∑

j=2N+1

ξ(ζ0 + ζ1 + . . . + ζj ) −
4N−1∑

j=3N+1

ξ(ζ0 + ζ1 + . . . + ζj )

)
,

subjected to the constraint equations given by the delta functions in (3.41), where ζj ∈ T
d ,

for j = 0, . . . ,4N . As already noted, F̃ (N, ζ ) and G̃(N, ζ ) can be further decomposed into

F̃ (N, ζ ) =
d∑

l=1

fl(N, ζ l ), (4.1)

G̃(N, ζ ) =
d∑

l=1

gl(N, ζ l ), (4.2)

where fl(N, ζ l ) and gl(N, ζ l ), given respectively by (3.47) and (3.48), only depend on
ζ l = (ζ0,l , ζ1,l , . . . , ζ4N,l) and will be subjected to the constraint equations given by the delta
functions in (3.42). Thus, fj (N, ζ j ) and fl(N, ζ l ), when j �= l, are functions of different
independent variables. Respectively, the analogous statements hold for gl(N, ζ l ). Moreover,
the factor −2/N only affects the properties of fl(N, ζ l ) and gl(N, ζ l ) in a trivial manner.
Consequently, without loss of generality, we only need to study the properties of f1(N, ζ 1)

and g1(N, ζ 1) without the factor −2/N , which will be denoted by f (ζ ) and g(ζ ), respec-
tively. Our main objective for the rest of this section is to study the properties of f (ζ )

and g(ζ ).

4.2 One Dimensional Problem

For a given π ∈ P , after the delta functions have been integrated out, the phases f (ζ ) =
fπ(ζ ) and g(ζ ) = gπ(ζ ) can be expressed explicitly as

fπ(ζ ) =
N−1∑
i=1

cos(κi) −
2N−1∑
i=N+1

cos(κi), (4.3)

gπ(ζ ) =
3N−1∑

i=2N+1

cos(κi) −
4N−1∑

i=3N+1

cos(κi), (4.4)

where

κi = −
i∑

j=0

σi,j ζj , (4.5)



Finite Trotter Approximation to the Averaged Mean Square Distance 1157

with σi,j = 0 or 1. It should be emphasized that hereafter ζi, κi ∈ T are all one dimensional,
and ζ := (ζ0, ζ1, . . . , ζ4N) := (ζ0, ζ�) ∈ T × T

4N . We note that κi in (4.5) now only depends
on the non-maximal variables ζj , hence so do fπ(ζ ) and gπ(ζ ), and we can consider them
as functions on T

4N+1−|π |. Henceforth, we refer to κi as an argument of cos(κi) rather than
an independent variable. To be precise, let z ∈ T

4N+1−|π | denote a (4N + 1 − |π |)-tuple of
non-maximal variables ζj ; that is,

z := (z0, zi1 , zi2 , . . . , zi4N−|π |),

where 1 ≤ i1 < i2 < . . . < i4N−|π | < 4N are all non-maximal elements of π , z0 = ζ0, and
zj = ζj if j is a non-maximal element. As such, we can write fπ(ζ ) = f̃π (z) and gπ(ζ ) =
f̃π (z). See Example 4.3. With the integrand Ψ (κN, κ3N) = Ψπ(κN, κ3N) = sin(κN) sin(κ3N),
we can rewrite Ξπ(s,u) and Λπ(s,u) as

Ξπ(s,u) :=
∫

T4N+1−|π |
eisf̃π (z)eiug̃π (z)Ψπ(κN, κ3N)dz, (4.6)

Λπ(s,u) :=
∫

T4N+1−|π |
eisf̃π (z)eiug̃π (z) dz. (4.7)

Definition 12 After integrating over the delta functions, some κi ’s defined in (4.5) may be
equal. By convention, if κi = κj and i < j , then κj is replaced by κi .

(i) We say that κj survives if it is not equal to any κi for i < j .
(ii) We say that ζj appears in κi , for i, j ∈ {1, . . . ,4N}, if κi survives and is a function of

ζj , i.e., σi,j = 1 in (4.5).
(iii) We say that cos(κj ) is present in fπ(ζ ) if there does not exist cos(κi), with

i, j ∈ {1, . . . ,2N − 1} \ {N}, such that cos(κi) − cos(κj ) ≡ 0. Analogously, we
say that cos(κj ) is present in gπ(ζ ) if there does not exist cos(κi), with i, j ∈
{2N + 1, . . . ,4N − 1} \ {3N}, such that cos(κi) − cos(κj ) ≡ 0.

Remark 13 The definition guarantees that the surviving κi ’s in (4.5) are all distinct, and
indeed, independent because each of them is a linear combination of non-maximal variables
associated with π , and no pair of such κi is expressed in terms of the same set of the non-
maximal variables ζj . It is clear that fπ(ζ ) depends on ζj if and only if f̃π (z) depends
on zj , and the same relationship holds for gπ(ζ ) and g̃π (z). Although we could use the
surviving κj as our independent variables, we will work with the non-maximal variables ζj

or, equivalently, zj .

4.3 Some Combinatoric Structures

In (4.6) and (4.7), the properties of the phases f̃π (z) and g̃π (z) depend critically on the struc-
ture of π . One useful technique to learn about these structures is to represent and classify
partitions by their graphs [8, 12]. Even though our classification is not in the same spirit as
in [8, 12], we find it useful to represent our partitions in similar fashion. Unlike the method
in [8, 12], our method contains two time parameters: s and u, and we must keep track of ±s

and ±u.
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Fig. 1 A base diagram

Example 4.1 π = {{1,N}, {2,2N,3N}, {3}, . . . , {N − 1}, {N + 1}, . . . , {2N − 1},
{2N + 1}, . . . , {3N − 1}, {3N + 1}, . . . , {4N}}.

Fig. 2 An example of a representation of a partition by its graph

In the base diagram in Fig. 1, there are four horizontal dashed lines, called propagation
lines, corresponding to the parameters ±s,±u. The lone vertical line, dividing the diagram
into the right-hand side and the left-hand side, is used to indicate that cos(κi), for i ∈ {1, . . . ,

2N − 1} \ {N}, appears in f̃π (z), and that cos(κi), for i ∈ {2N + 1, . . . ,4N − 1} \ {3N},
appears in g̃π (z). The numbers on the dashed lines represent indices of the lattice points at
which the potential terms are being evaluated. If two indices i and j belong to the same
block of π , then they are connected in the diagram by a solid line. Each block with a single
element is presented by a solid node; see Fig. 2. The letter p at the N -th and 3N -th nodes
is a reminder that the function Ψπ(·, ·) involves κN and κ3N , i.e., that the N - and 3N -th
terms in the convolution are the Fourier transform of quantities involving the momentum
operator p, see (3.20) in Lemma 3. In addition, the boxes around the N -th, 2N -th, 3N -th
and 4N -th nodes signify that cos(κN), cos(κ2N), cos(κ3N) and cos(κ4N) do not appear in
f̃π (z) and g̃π (z).

While it is not absolutely essential in the proof of our result, we find it convenient to view
each partition from its graph. In addition to keeping track of variables such as tj defined in
(3.21) and helping to integrate over K̃π (ζ�), the diagram also helps to construct examples.

Remark 14 Examples 3.3 and 3.4 suggest that there are many partitions π (such as those
with Ξπ(s,u) ≡ 0) which do not contribute to Eω‖XN(t)δ0‖2. It is interesting and useful to
identify all such partitions. In general, we hope to divide partitions into smaller subcollec-
tions on which we can estimate Aπ(t) and Γπ(t) based on the common structures of each
subcollection—an approach which was introduced by [8, 12].

Definition 13 (Some Classifications of Graphs) Let π = {S1(π), S2(π), . . . , Sm(π)} ∈ P .

(i) A partition π has a separated graph if there does not exist a pair of elements i, j with
1 ≤ i ≤ 2N and 2N + 1 ≤ j ≤ 4N such that i and j belong to the same block.

(ii) A partition π has a pairing graph if |Sk(π)| = 2 for each k = 1, . . . ,m.
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(iii) A partition π has a ladder graph on the right-hand side if it contains blocks of
the form {1,2N}, {2,2N − 1}, . . . , {k,2N + 1 − k}, . . . , {N,N + 1} while the blocks
containing elements from {2N+1,. . . ,4N} are arbitrary. Respectively, π has a ladder
graph on the left-hand side if it contains blocks of the form {2N + 1,4N}, {2N + 2,

4N − 1}, . . . , {2N + k,4N + 1 − k}, . . . , {3N,3N + 1} while the blocks containing
elements from {1, . . . ,2N} are arbitrary. π has a ladder graph if it simultaneously has
a ladder graph on the left- and right-hand sides.

These are examples of classifications of graphs, which help to study the properties of
f̃π (z) and g̃π (z), hence to estimate Aπ(t) and Γπ(t).

Example 4.2 A ladder graph on one side.

Fig. 3 A ladder graph on the right-hand side

Remark 15

(i) It is clear that a ladder graph is a special case of a pairing graph.
(ii) A ladder graph on the right-hand side or on the left-hand side is a special case of a

separated graph.
(iii) If π has a ladder graph, then Ξπ(s,u) ≡ 0, so Γπ(t) = Aπ(t) = 0. This is a special case

of a more general result proved below.

Lemma 9 If either N and N + 1 or 3N and 3N + 1 belong to the same block of π , then
Ξπ(s,u) ≡ 0.

Proof Let π ∈ P be fixed. Suppose 3N and 3N + 1 belong to the same block of π . If
3N + 1 is a maximal element, then 3N is a non-maximal element, so ζ3N is a non-maximal
variable of which both fπ(ζ ) and gπ(ζ ) are independent. Therefore, f̃π (z) and g̃π (z) are
independent of z3N . However, Ψπ(κN, κ3N) depends on z3N because

Ψπ(κN, κ3N) = sin(z0 + . . . + zν) sin(z0 + . . . + z3N),

for some non-maximal element ν with 1 ≤ ν ≤ N ; cf. (4.5). As a result, integrating (4.6)
with respect to z3N yields Ξπ(s,u) ≡ 0.

If 3N + 1 is a non-maximal element, then there exists a maximal element j > 3N + 1
such that ζ3N and ζ3N+1 do not appear in κi for i ≥ j . (Recall that, before integrating over the
delta functions, ζ3N + ζ3N+1 appears in each κi for i ≥ 3N + 1). Let w3N := z3N = ζ3N and
w3N+1 := z3N + z3N+1 = ζ3N + ζ3N+1. Then, by (4.4), g̃π (z) := gπ(ζ ) depends on w3N+1,
but does not depend on w3N . However, Ψπ(κN, κ3N) does depend on w3N as

Ψπ(κN, κ3N) = sin(z0 + . . . + zν) sin(z0 + . . . + w3N),
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for some non-maximal element ν with 1 ≤ ν ≤ N . It is clear that f̃π (z) is independent of
z3N , hence independent of w3N . As a result, the change of variables allows us to integrate
(4.6) with respect to w3N to obtain Ξπ(s,u) ≡ 0.

Similarly, if N and N +1 belong to the same block of π and N +1 is a maximal element,
then f̃π (z) and g̃π (z) are independent of zN = ζN . Moreover,

Ψπ(κN, κ3N) = sin(z0 + . . . + zN) sin(z0 + . . . + zν),

for some non-maximal variable ν with 1 ≤ ν ≤ 3N , where zN does not appear in the argu-
ment of the second sine term. Thus, the same conclusion follows by integrating (4.6) with
respect to zN . If N and N +1 belong to the same block and N +1 is a non-maximal element,
then there exists a maximal element j > N + 1 such that ζN and ζN+1 do not appear in κi

for i ≥ j . Let wN := zN = ζN and wN+1 := zN + zN+1 = ζN + ζN+1. Then, as before, both
f̃π (z) and g̃π (z) are independent of wN , and only one factor of sine in Ψπ(κN, κ3N) does
depend on wN . Hence, the same conclusion follows by integrating (4.6) with respect to wN .
This completes the proof of the lemma. �

Remark 16 It follows from the delta functions in (3.42) that, for each partition π ∈ P , we
always have ζ1 + ζ2 + . . . + ζ4N = 0, which implies κ4N = κ0 = −ζ0. If, in addition, π has
a separated graph, then we also have that ζ1 + ζ2 + . . . + ζ2N = 0, and ζ2N+1 + ζ2N+2 +
. . . + ζ4N = 0, which means that κ2N = −ζ0 = κ0 = κ4N . The converse is also true; that is,
if κ4N = κ2N = κ0 = −ζ0, then ζ1 + ζ2 + . . . + ζ2N = 0 and ζ2N+1 + ζ2N+2 + . . . + ζ4N = 0,
which implies that π has a separated graph.

If π has a separated graph, then f̃π (z) and g̃π (z) are functions of different indepen-
dent variables, except for z0. Therefore, the corresponding oscillatory integrals in (4.6), and
(4.7) simplify to the product of two oscillatory integrals, each with a single phase, to which
one can apply the standard stationary phase and non-stationary principles to estimate Aπ(t)

and Γπ(t).

Lemma 10 If π has a ladder graph on the right-hand side, then f̃π (z) ≡ 0. If π has a
ladder graph on the left-hand side, then g̃π (z) ≡ 0. Consequently, if π has a ladder graph,
then f̃π (z) ≡ g̃π (z) ≡ 0.

Proof It is enough to prove the corresponding statements for fπ(ζ ) and gπ(ζ ). In order
to have a ladder graph on either side or on both sides, π must have a separated graph,
which implies that fπ(ζ ) depends on the non-maximal variables ζj with 1 ≤ j ≤ 2N , while
gπ(ζ ) depends on the non-maximal variables ζj with 2N + 1 ≤ j ≤ 4N . Suppose π has
a ladder graph on the right-hand side, then ζ0, ζ1, . . . , ζN are non-maximal variables and
ζN+1, . . . , ζ2N are maximal variables. After integrating over the delta functions, the argu-
ments κi in (4.5) are given exactly by

κi = −
i∑

j=0

ζj ,

for i = 0, . . . ,N . Since π has a ladder graph on the right-hand side, the arguments of the
delta functions in (3.42) imply ζj + ζ2N−j+1 = 0 for each j = 1, . . . ,N ; in particular, ζN +
ζN+1 = 0, which yields

κN+1 = κN−1 − ζN − ζN+1 = κN−1.
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Moreover, ζN−1 + ζN+2 = 0, which gives

κN+2 = κN+1 − ζN+2 = κN−2 − ζN−1 − ζN−2 = κN−2.

By induction, κN+j = κN−j for each j = 1, . . . ,N . Therefore, the cosine terms in the ex-
pression (4.3) cancel out in pairs, which results in fπ(ζ ) ≡ 0. Therefore, f̃π (z) ≡ 0.

Now suppose that π has ladder graph on the left-hand side, then

κi = −ζ0 −
i∑

j=2N+1

ζj

for each i with 2N + 1 ≤ i ≤ 3N . Since ζ3N+j + ζ3N−j+1 = 0, the above argument applies,
and we can conclude that κ3N+j = κ3N−j . Therefore, g̃π (z) = gπ(ζ ) = 0 , which proves the
lemma. �

The converse is not true as is evident from π = {{1,5,8}, {2}, {3}, {4}, {6}, {7}} when
N = 2, which illustrates that f̃π (z) and g̃π (z) can vanish identically even though π does not
have a ladder on either side.

Definition 14 We say that a partition π = {S1(π), S2(π), . . . , Sm(π)} is even if |Sl | ∈ 2N

for all 1 ≤ l ≤ m.

Definition 15 Given the collection of partitions P , let PE denote the subcollection of even
partitions, and P0 the subcollection of partitions π = {S1(π), S2(π), . . . , Sm(π)} such that∑

j∈Sk(π) tj ≡ 0 for each k = 1, . . . ,m, where tj is defined in (3.21).

It is clear that P0 ⊂ PE , and that if π ∈ P0, then μ̌π (s, u) ≡ 1. The above classification
suggests that when π /∈ P0, then we immediately obtain some decay from Ǔπ (s, u) provided
that μ̌ ∈ L2(R), as seen in Examples 3.3 and 3.4. A rigorous proof of this statement will
be given by Lemma 16 in Sect. 5. Showing that |Aπ(t)| = ON(t) or |Γπ(t)| = ON(t) for
π ∈ P0 is more technical.

Lemma 11 π /∈ P0 does not have a subpartition π ′ ∈ P0.

Proof Since π /∈ P0, then there exists a block, say Sk(π), such that
∑

l∈Sk(π) tl �= 0. Consider
a partition of this block; suppose it consists of sets Sk1 , Sk2 , . . . , Skn , where

⋃n

j=1 Skj
=

Sk(π) and Skj
∩ Skl

= ∅ for j �= l. If
∑

l∈Skj
tl = 0, for all j = 1, . . . , n, then

∑
l∈Sk(π) tl =∑n

j=1

∑
l∈Skj

tl = 0, which leads to a contradiction. Therefore, there exists a block Skj
such

that
∑

l∈Skj
tl �= 0, which implies that if π /∈ P0, then its subpartition of π does not belong

to P0. �

Corollary 2 In (3.35), there exists π ′ ≺ π such that μ̌π ′(s, u) ≡ 1 if and only if π ∈ P0.
Thus, if π /∈ P0, then Ǔπ (s, u) does not have a constant term independent of s and u.

Proof If π ∈ P0, it is obvious that μ̌π (s, u) ≡ 1. If π /∈ P0, then μ̌π ′(s, u) ≡ 1 for some
subpartition π ′ ≺ π only if π ′ ∈ P0. This is impossible by Lemma 11. Thus, if π /∈ P0, then
every term in the sum on the right-hand side of (3.35) for Ǔπ (s, u) depends on s or u, which
proves the claim. �
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4.4 Some Properties of Phases

In this section, we will study some properties of f̃π (z) and g̃π (z). We have already learned
from Lemma 10 that f̃π (z) and g̃π (z) can be identically zero for some collection of parti-
tions.

Example 4.3 Let π = {{1,4}, {2,5}, {3,6}, {7,10}, {8,11}, {9,12}} when N = 3. Here,

ζ := (ζ0, ζ1, ζ2, ζ3, ζ4, ζ5, ζ6, ζ7, ζ8, ζ9, ζ10, ζ11, ζ12) ∈ T
13,

z := (ζ0, ζ1, ζ2, ζ3, ζ7, ζ8, ζ9) = (z0, z1, z2, z3, z7, z8, z9) ∈ T
7.

In terms of non-maximal variables, f̃ (z) and g̃(z) can be written as

f̃π (z) := cos(z0 + z1) + cos(z0 + z1 + z2) − cos(z0 + z2 + z3) − cos(z0 + z3),

g̃π (z) := cos(z0 + z7) + cos(z0 + z7 + z8) − cos(z0 + z8 + z9) − cos(z0 + z9).

Define Fπ(z, s, u) := sf̃π (z) + ug̃π (z). We observe that if z̃ = (a, b,π, b, b,π, b) ∈ T
7 with

a + b = ± π
2 , then f̃π (z̃) = g̃π (z̃) = 0 and ∇zf̃π (z̃) = ∇zg̃π (z̃) = 0. It is also easy to check

that all second partial derivatives of Fπ(z, s, u) with respect to z vanish at z̃ for all s, u ≥ 0.
This example shows that there exists a partition such that f̃π (z) and g̃π (z) are not identically
zero, yet they and their Hessian matrices can simultaneously vanish at a critical point.

Remark 17 There exists a partition π such that the set of critical points of f̃π (z) and g̃π (z) is
not discrete. In fact, they are not necessarily manifolds. As noted, the set of critical points of
Fπ(z, s, u) := sf̃π (z) + ug̃π (z) depends on the parameters s and u. In [39], it is shown that
if (s0, u0, z̃) ∈ [0,1] × [0,1] × T

4N+1−|π | such that the Hessian matrix of s0f̃π (z̃) + u0g̃π (z̃)

has rank at least one, then |Γπ(t)| ≤ ct , for some c > 0. However, it is clear from Lemma 10
and Example 4.3 that such a condition is not always satisfied. It is not clear how to estimate
oscillatory integrals in (B.1) whose two phases along with their first and second derivatives
vanish at the same point.

Definition 16 Let P denote the collection of partitions π = {S1(π), . . . , Sm(π)} ∈ P with
the following properties:

(i) N and N + 1 do not belong to the same block;
(ii) 3N and 3N + 1 do not belong to the same block;

(iii) |Sk(π)| > 1 for each k = 1, . . . ,m;
(iv) 1, . . . ,N and 2N + 1, . . . ,3N are non-maximal elements.

Remark 18 From Definition 16, we can deduce the following.

(i) z = (z0, z1, . . . , zN , zk1 , . . . , zkp , z2N+1, z2N+1, . . . , z3N, zl1 , . . . , zlq ), where N + 1 ≤
k1 < k2 < . . . < kp ≤ 2N and 3N + 1 ≤ l1 < l2 < . . . < lq < 4N are non-maximal
elements.

(ii) Consider fπ(ζ ) in (4.3) and gπ(ζ ) in (4.4). Since |Sk(π)| > 1 for each k = 1, . . . ,m, if
j is a maximal element, i.e., ζj is a maximal variable, then there exists a non-maximal
element l ∈ {1, . . . , j} such that the non-maximal variable ζl does not appear in κi for
each i ≥ j ; hence the arguments κi do not depend on ζl . It is more evident to see this
from a graph viewpoint, using the diagram in Fig. 3.
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(iii) κN+1 is distinct from any other κi , with i ≤ N . If N + 1 is non-maximal, then by (4.5),

κi = −
i∑

j=0

ζj ,

for each i = 0,1, . . . ,N + 1. In particular, ζN+1 appears in κN+1, but it does not appear
in κi , for any i = 1, . . . ,N . If N + 1 is a maximal element, then there exists a non-
maximal element j ∈ {1, . . . ,N − 1} such that ζj does not appear in κN+1 because
|Sk(π)| > 1 for each k = 1, . . . , |π | and N does not belong to the same block as N + 1.
This implies that κN+1 �= κN because ζj does appear in κN . To see that κN+1 �= κi for
any i < N , we again consider κi in (4.5) and observe that ζN does not appear in κi for
any i < N , but it does appear in κN+1 as

κN+1 = −
N+1∑
j=0

σN+1,j ζj = −
N+1∑
j=0

σN+1,j ζj − ζN .

This proves that κN+1, which depends on ζN , is distinct from any other κi , for i ≤ N .
Consequently, cos(κN+1) will be present in (4.3).

(iv) Similarly, κ3N+1, which depends on ζ3N , is distinct from other κi , where 2N + 1 ≤ i ≤
3N , and cos(κ3N+1) will be present in (4.4).

Lemma 12 Suppose π ∈ P. There exist multi-indices α and β with |α| = 2, and |β| = 3
such that

|∂α
z g̃π (z)|2 + |∂β

z g̃π (z)|2 = 1, (4.8)

∂α
z f̃π (z) = ∂β

z f̃π (z) = 0. (4.9)

Proof Fix π ∈ P. Let p denote the greatest non-maximal element of π . By definition, p +1
is a maximal element, and p ≥ 3N because π ∈ P. Recall that f̃π (z) = fπ(ζ ) given by (4.3),
and that g̃π (z) = gπ(ζ ) given by (4.4).

If p = 3N , then 3N + 1, . . . ,4N are all maximal elements. From Remark 18(iii),
cos(κ3N+1) is present in (4.4), and κ3N+1 depends on ζ3N , one of the non-maximal vari-
ables. Since 3N + 2 is also a maximal element and |Sk(π)| > 1, for each k = 1, . . . , |π |,
there exists a non-maximal element l ∈ {1, . . . ,3N} such that the non-maximal variable ζl

does not appear in κi when i ≥ 3N +2, by Remark 18(ii). However, ζl does appear in κ3N+1.
As a result,

∂2

∂z3N∂zl

g̃π (z) = ∂2

∂ζ3N∂ζl

gπ (ζ ) = cos(κ3N+1)

∣∣∣
z

and

∂3

∂z2
3N∂zl

g̃π (z) = ∂3

∂ζ 2
3N∂ζl

gπ (ζ ) = sin(κ3N+1)

∣∣∣
z

satisfy (4.8).
Now suppose p > 3N . Since p + 1 is a maximal element, there exists a non-maximal

element l ∈ {1, . . . , p} such that the non-maximal variable ζl does not appear in κi for i ≥
p + 1 by Remark 18(ii). Moreover, since ζp is a non-maximal variable, cos(κp) is present
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in (4.4). Therefore,

∂2

∂zp∂zl

g̃π (z) = ∂2

∂ζp∂ζl

gπ (ζ ) = cos(κp)

∣∣∣
z

and

∂3

∂z2
p∂zl

g̃π (z) = ∂3

∂ζ 2
p∂ζl

gπ (ζ ) = sin(κp)

∣∣∣
z

satisfy (4.8).
In both cases, ζp is one of the non-maximal variables of which fπ(ζ ) is independent;

thus, it is immediate that

∂

∂zp

f̃π (z) = ∂

∂ζp

fπ(ζ ) = 0.

This completes the proof of the lemma. �

Corollary 3 Let π ∈ P. Then, with k = 3 and vt ≥ 1,

|Ξπ(wt, vt)| ≤ C1t
−1/kv−1/k, (4.10)

|Λπ(wt, vt)| ≤ C2t
−1/kv−1/k, (4.11)

where C1 and C2 are constants independent of w,v, and t .

Proof With s = wt,u = vt , and using (4.6) and (4.7), we can write

Ξπ(wt, vt) =
∫

T4N+1−|π |
eitFπ (z,w,v)Ψπ(κN, κ3N)dz,

Λπ(wt, vt) =
∫

T4N+1−|π |
eitFπ (z,w,v) dz,

with Fπ(z,w,v) = wf̃π(z) + vg̃π (z). By Lemma 12, for each z̃ ∈ T
4N+1−|π |, there exists a

multi-index α = α(z̃) with 2 ≤ |α| ≤ 3 such that

|∂αFπ(z̃,w, v)|= v|∂αg̃π (z̃)|> δv,

for some δ > 0. By Remark 7, we can take u := vt ≥ 1 and s := wt ≥ 1. Using a partition
of unity, |α| := k = 3 is the worst case for vt ≥ 1. Applying Lemma 19 with rescaling and
translating, (4.10) and (4.11) follow. �

The next two lemmas show that (4.10) and (4.11) hold when v is replaced by w.

Definition 17 Let P1 denote the collection of partitions π = {S1(π), . . . , Sm(π)} with prop-
erties:

(i) N and N + 1 do not belong to the same block;
(ii) 3N and 3N + 1 do not belong to the same block;

(iii) |Sk(π)| > 1 for each k = 1, . . . ,m;
(iv) N + 1, . . . ,2N and 3N + 1, . . . ,4N are non-minimal elements.
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Remark 19 P and P1 are not the same subcollection of partitions. Their relation will be
clear in the next lemma.

Lemma 13 Suppose π ∈ P1. There exist multi-indices α and β with |α| = 2, and |β| = 3
such that (4.8) and (4.9) hold.

Proof Let π ∈ P1, and define

Mπ := {j : 2N + 1 ≤ j ≤ 4N − 1 such that j is non-maximal}.

Claim: Mπ is nonempty. Suppose Mπ is empty, then each j with 2N + 1 ≤ j ≤ 4N is a
maximal element, which implies that |π | ≥ 2N . If |π | > 2N , then π has a block of single
element, which means that π cannot belong to P1. If |π | = 2N , then either all blocks of π

have two elements or π has a block of a single element. We only need to consider when all
blocks of π have two elements, in which case 2N + 1, . . . ,4N are all maximal elements,
and 1, . . . ,2N are all minimal elements, which contradicts the property (iv) in Definition 17.
Therefore, Mπ is nonempty for each π ∈ P1 as claimed.

Let p := max{j : j ∈ Mπ }. Then, ζp is one of the non-maximal variables on which fπ(ζ )

does not depend. Hence,

∂

∂zp

f̃π (z) = ∂

∂ζp

fπ(ζ ) = 0,

for each z ∈ T
4N+1−|π |. It remains to show that there exist multi-indices α,β , with |α| = 2,

|β| = 3 and αp , βp ≥ 1 such that (4.8) holds.
To that end, we note that p + 1 is a maximal element. Since |Sk(π)| > 1 for each k =

1, . . . , |π |, there exists a non-maximal element l ∈ {1, . . . , p} such that the non-maximal
variable ζl does not appear in κi for each i ≥ p + 1, see also Remark 18(ii). However, κp

depends on ζl and ζp .
If p = 3N , then ζ3N is one of the non-maximal variables on which κ3N+1 depends be-

cause 3N and 3N + 1 do not belong to the same block, see also Remark 18(iii). Since
3N + 2 is a maximal element, there exists a non-maximal element l ∈ {1, . . . ,3N} such that
the non-maximal variable ζl does not appear in κi for each i ≥ 3N + 2. Then,

∂2

∂zl∂z3N

g̃π (z) = ∂2

∂ζl∂ζ3N

gπ(ζ ) = cos(κ3N+1)

∣∣∣
z

and

∂3

∂zl∂z2
3N

g̃π (z) = ∂3

∂ζl∂ζ 2
3N

gπ(ζ ) = sin(κ3N+1)

∣∣∣
z

satisfy (4.8).
Now suppose p �= 3N . We claim that cos(κp) is present in (4.4). For p > 3N , the claim

follows directly since cos(κp) appears in the second sum in (4.4) and κp is distinct from
any κi for i < p. For p < 3N , we will prove that cos(κp) �≡ cos(κq) for any q ≥ 3N + 1.
We note that q is a maximal element, so ζq is a maximal variable. Thus, there exists a non-
maximal element ν ∈ {1, . . . , p} such that the non-maximal variable ζν does not appear in
κi for i ≥ q . By (4.5), this means that κp depends on ζν , but κq does not. Hence, κp �= κq as
variables in T. Therefore, cos(κp) �≡ cos(κq), which proves the claim that cos(κp) is present
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in (4.4). Consequently,

∂2

∂zl∂zp

g̃π (z) = ∂2

∂ζl∂ζp

gπ (ζ ) = ∓ cos(κp)

∣∣∣
z

and

∂3

∂zl∂z2
p

g̃π (z) = ∂3

∂ζl∂ζ 2
p

gπ(ζ ) = ∓ sin(κp)

∣∣∣
z

satisfy (4.8). (The sign is a minus if p < 3N , and a plus if p > 3N .) This completes the
proof of the lemma. �

Lemma 14 Let π ∈ P. Then, with k = 3 and wt ≥ 1,

|Ξπ(wt, vt)| ≤ D1t
−1/kw−1/k, (4.12)

|Λπ(wt, vt)| ≤ D2t
−1/kw−1/k, (4.13)

where D1 and D2 are constants independent of w,v, and t .

Proof Before integrating over the delta functions, Ξπ(s,u) and Λπ(s,u) (see (3.50) and
(3.51)) are integrals of the same form given by

∫
T4N+1

eisf (ζ )eiug(ζ )ψ(ζ )K̃π (ζ�) dζ,

where the phases f (ζ ) and g(ζ ) are given by

f (ζ ) =
N−1∑
j=1

cos(ζ0 + . . . + ζj ) −
2N−1∑

j=N+1

cos(ζ0 + . . . + ζj ), (4.14)

g(ζ ) =
3N−1∑

j=2N+1

cos(ζ0 + . . . + ζj ) −
4N−1∑

j=3N+1

cos(ζ0 + . . . + ζj ). (4.15)

Here, ζj ∈ T for each j = 0, . . . ,4N , and ζ = (ζ0, ζ1, . . . , ζ4N) = (ζ0, ζ�). The only dif-
ference between Ξπ(s,u) and Λπ(s,u) lies in the integrand ψ(ζ ); namely, ψ(ζ ) ≡ 1 for
Λπ(s,u), whereas ψ(ζ ) := sin(ζ0 + . . . + ζN) sin(ζ0 + . . . + ζN + . . . + ζ3N) for Ξπ(s,u).
With s := wt and u := vt , it suffices to show that, for each π ∈ P,

∣∣∣
∫

T4N+1
eiwtf (ζ )eivtg(ζ )ψ(ζ )K̃π (ζ�) dζ

∣∣∣≤ c(wt)−1/k,

for wt ≥ 1 and some constant c > 0, where ψ(ζ ) is any one of the two functions mentioned
above. Recall that, for each π ∈ P , ζ1 + . . .+ζ4N = 0. We introduce new variables w0 = −ζ0

and wj := ζ4N−j+1, or equivalently, ζj = w4N−j+1, for j = 1, . . . ,4N . In a matrix notation,
wT

� = AζT
� , where ζ T

� denotes a column vector of ζ1, . . . , ζ4N , and wT
� a column vector of

w1, . . . ,w4N . It is easy to see that A is a 4N × 4N matrix with one on the anti-diagonal (i.e.,
the diagonal going from the lower left corner to the upper right corner) and zero elsewhere.
Thus, det(A) = 1 and A2 = I .
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Consider f (ζ ) in (4.14) and g(ζ ) in (4.15). Rewriting the sum in (4.14) in reverse order
and using ζ1 + . . . + ζ4N = 0, f (ζ ) can be expressed as

f (ζ ) = − cos(ζ0 + ζ1 + . . . + ζ2N−1) − . . . − cos(ζ0 + ζ1 + . . . + ζN−1 + ζN + ζN+1)

+ cos(ζ0 + ζ1 + . . . + ζN−1) + . . . + cos(ζ0 + ζ1)

= − cos(ζ0 − ζ2N − . . . − ζ4N) − . . . − cos(ζ0 − ζN+2 − . . . − ζ4N)

+ cos(ζ0 − ζN − . . . − ζ4N) + . . . + cos(ζ0 − ζ2 − . . . − ζ4N)

= − cos(−w0 − w2N+1 − . . . − w1) − . . . − cos(−w0 − w3N−1 − w3N−2 − . . . − w1)

+ cos(−w0 − w3N+1 − . . . − w1) − . . . − cos(−w0 − w4N−1 − w4N−2 − . . . − w1)

= − cos(w0 + w1 + . . . + w2N+1) − . . . − cos(w0 + w1 + . . . + w3N−1)

+ cos(w0 + w1 + . . . + w3N+1) + . . . + cos(w0 + w1 + . . . + w4N−1)

:= f �(w).

Similarly, we can do the same for g(ζ ) in (4.15).

g(ζ ) = cos(ζ0 + ζ1 + . . . + ζ2N+1) + . . . + cos(ζ0 + ζ1 + . . . + ζ3N−1)

− cos(ζ0 + ζ1 + . . . + ζ3N+1) − . . . − cos(ζ0 + ζ1 + . . . + ζ4N−1)

= − cos(w0 + w1) − . . . − cos(w0 + . . . + wN−1)

+ cos(w0 + . . . + wN+1) + . . . + cos(w0 + . . . + w2N−1)

:= g�(w).

Indeed, f �(w) = −g(w) and g�(w) = −f (w); in particular, f �(w) depends on variables
w0,w1, . . . ,w4N , whereas g�(w) only depends on w0,w1, . . . ,w2N−1. Moreover,

sin(κN) sin(κ3N) := sin(ζ0 + . . . + ζN) sin(ζ0 + . . . + ζN + . . . + ζ3N)

= sin(ζ0 − ζN+1 − . . . − ζ4N) sin(ζ0 − ζ3N+1 − . . . − ζ4N)

= sin(−w0 − w3N − . . . − w1) sin(−w0 − wN − . . . − w1)

= sin(w0 + w1 + . . . + wN) sin(w0 + w1 + . . . + w3N).

Thus, ψ(ζ ) = ψ(w). Next, we consider the effect of the change of variables ζ T
� �→ wT

� :=
AζT

� on K̃π (ζ�). Since the constraint equations, obtained by setting each argument in the
delta functions equal zero, are given by a homogeneous system of linear equations, where
each ζj , for 1 ≤ j ≤ 4N , appears exactly once with coefficient one, we can write BζT

� = 0
for some |π |×4N matrix B , where each entry of B is either zero or one. In terms of the new
variable wT

� , the constraint equations are given by BAwT
� := B̃wT

� = 0. In effect, A reverses
the order of the columns of B . This means that if ζj is a maximal variable, then the corre-
sponding w4N−j+1 is a minimal variable, and if ζj is a non-maximal variable, then w4N−j+1

is a non-minimal variable associated with π . Then, K̃π (ζ�) = K̃π ((AwT
� )T ) := ˜̃

Kπ(w�),

where the new kernel ˜̃
Kπ(w�) consists of a product of delta functions whose arguments

are linear combinations of wj , where each wj , for 1 ≤ j ≤ 4N , appears exactly once with
coefficient one.
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Claim: If π ∈ P, then ˜̃
Kπ(w�) = K̃π̃ (w�) for some π̃ ∈ P1. (See Definitions 16 and 17.)

Proof of Claim: If π ∈ P, then 1, . . . ,N and 2N + 1, . . . ,3N are non-maximal ele-
ments, which means that ζ1, . . . , ζN and ζ2N+1, . . . , ζ3N are non-maximal variables, hence
wN+1, . . . ,w2N and w3N+1, . . . ,w4N are non-minimal variables. Moreover, w4N−j+1 and

w4N−l+1 appear in the same constraint equation corresponding to ˜̃
Kπ(w�) if and only if ζj

and ζl appear in the same constraint equation corresponding to K̃π (ζ�). This implies that the
above change of variables preserves the properties (i)–(iii) in Definition 16. This completes
the proof of the claim.

Consequently, if π ∈ P,
∫

T4N+1
eisf (ζ )eiug(ζ )ψ(ζ )K̃π (ζ�) dζ =

∫
T4N+1

eisf �(w)eiug�(w)ψ(w)
˜̃

Kπ(w�) dw

=
∫

T4N+1
e−isg(w)e−iuf (w)ψ(w)K̃π̃ (w�) dw,

for some π̃ ∈ P1. To obtain the upper bounds in (4.12) and (4.13), we apply Lemma 13 and
follow the proof of Corollary 3, where w and v are interchanged. �

To summarize, we have shown that if π ∈ P,wt ≥ 1 and vt ≥ 1, then Ξπ(wt, vt) sat-
isfies the inequalities (4.10) and (4.12), and Λπ(wt, vt) satisfies (4.11) and (4.13). Thus,
I(wt, vt) := Ξπ(wt, vt)Λπ(wt, vt)d−1 satisfies (B.10). Then, we follow Corollary 7 to ob-
tain the following result.

Corollary 4 Let π ∈ P. Then, for large t ,

∫ t

1

∫ t

1
|Ξπ(s,u)||Λπ(s,u)|d−1 dsdu =

⎧⎪⎨
⎪⎩

O(t2− d
k ) if d < 2k,

O((ln t)2) if d = 2k,

O(1) if d ≥ 2k.

(4.16)

In particular, combined with Remark 7, this implies that there exists a constant Cπ > 0 such
that

|Γπ(t)| ≤
∫ t

0

∫ t

0
|Ξπ(s,u)||Λπ(s,u)|d−1 dsdu ≤ Cπ t,

when d ≥ k = 3.

Proof Let π ∈ P be fixed. With k = 3, s = wt ≥ 1 and u = vt ≥ 1,

|Ξπ(wt, vt)||Λπ(wt, vt)|d−1 ≤ Ct−d/kw−dϑ/kv−d(1−ϑ)/k,

for any ϑ ∈ [0,1] and some constant C > 0 independent of w,v and t . Then,

∫ t

1

∫ t

1
|Ξπ(s,u)||Λπ(s,u)|d−1 dsdu ≤ t2

∫ 1

1/t

∫ 1

1/t

|Ξπ(wt, vt)||Λπ(wt, vt)|d−1 dwdv

≤ Ct2t−d/k

∫ 1

0

∫ 1

0
w−dϑ/kv−d(1−ϑ)/k dwdv.

Therefore, the claimed statements follows from the estimates in Corollary 7. �
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5 Proof of the Main Result

Finally, we put all pieces together to prove Proposition 1. The key strategy is very simple.
For each π ∈ P , we will show that |Aπ(t)| = ON(t) for large t in dimensions d ≥ 3 provided
μ̌ ∈ L2(R). The following lemmas give estimates of Aπ(t) for each π ∈ P.

Lemma 15 Suppose d ≥ 3. If π ∈ P, then there exists a constant Cπ(N) such that |Aπ(t)| ≤
Cπ(N) t.

Proof For π ∈ P, by (3.54),

|Aπ(t)| :=
∣∣∣
∫ t

0

∫ t

0
Ûπ (s, u)Ξπ(s, u)Λπ(s,u)d−1 dsdu

∣∣∣

≤ (4d) sup
(s,u)∈[0,t]×[0,t]

|Ǔπ (s, u)|
∫ t

0

∫ t

0
|Ξπ(s,u)||Λπ(s,u)|d−1 dsdu

≤ Cπ(N) t,

by Corollary 4 with k := 3, which completes the proof for d ≥ 3. �

Lemma 16 Suppose μ̌ ∈ L2(R). If π /∈ P0, then there exists a constant Cπ(N) such that

∫ t

0

∫ t

0
|Ǔπ (s, u)|dsdu ≤ Cπ(N)‖μ̌‖2

2 t. (5.1)

Proof By (3.35),

|Ǔπ (s, u)| ≤
∑
π ′≺π

|nπ,π ′ ||μ̌π ′(s, u)|.

If π /∈ P0, then, by Lemma 11 and Corollary 2, each term |μ̌π ′(s, u)| in the above sum
depends on s or u. Specifically, for each π ′ ≺ π /∈ P0,

|μ̌π ′(s, u)| ≤ |μ̌(v)||μ̌(v′)|,
for some v = a1s/N +a2u/N and v′ = a3s/N +a4u/N , where a1, a2, a3, and a4 are integers
with |a1| + |a2| ≥ 1 and |a3| + |a4| ≥ 1. Then,

∫ t

0

∫ t

0
|μ̌(v)||μ̌(v′)|dsdu = N2

∫ t/N

0

∫ t/N

0
|μ̌(a1s + a2u)||μ̌(a3s + a4u)|dsdu. (5.2)

Without loss of generality, we can assume a1 �= 0. Let w = u,y = a1s + a2u. Then,

∫ t/N

0

∫ t/N

0
|μ̌(a1s + a2u)||μ̌(a3s + a4u)|dsdu

≤ C1

∫ t/N

0

∫ βt/N

−βt/N

|μ̌(by + cw)||μ̌(y)|dydw,

for some C1, β > 0 and some constants b, c. If c = 0, then we apply the Schwarz inequality.
If c �= 0, we first integrate over w and apply the Schwarz inequality. In both cases, we can
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conclude that ∫ t

0

∫ t

0
|μ̌(v)||μ̌(v′)|dsdu ≤ C2(N)‖μ̌‖2

2 t,

for some C2(N) > 0, which proves the lemma. �

Corollary 5 Suppose μ̌ ∈ L2(R). If π ∈ P \ P, then either Ξπ(s,u) ≡ 0 or there exists a
constant Cπ(N) such that

∫ t

0

∫ t

0
|Ǔπ (s, u)|dsdu ≤ Cπ(N)‖μ̌‖2

2 t.

Proof If π ∈ P \ P, then π fails to satisfy at least one of the properties (i)–(iv) in De-
finition 16. If Definition 16(i) or Definition 16(ii) is not satisfied, then Ξπ(s,u) ≡ 0 by
Lemma 9.

If Definition 16(iii) is not satisfied, then π contains a block of single element, so π is
not even, and thus, π /∈ P0. Similarly, if Definition 16(iv) is not satisfied, then there exists at
least one maximal element j ∈ {1, . . . ,N,2N + 1, . . . ,3N}. This implies that there exists a
block of π , say S ⊂ S, such that

∑
j∈S tj �= 0; thus, π /∈ P0. Consequently, the estimate in

Lemma 16 is valid in the latter two cases. �

Proof of Proposition 1 Recall the definition of the amplitude Aπ(t) in (3.54):

Aπ(t) = (4d)

∫ t

0

∫ t

0
Ûπ (s, u)Ξπ(s, u)Λπ(s,u)d−1 dsdu.

Since Eω‖XN(t)δ0‖2 ≤∑π∈P |Aπ(t)| =∑π∈P
|Aπ(t)| +∑π∈P\P |Aπ(t)|, it suffices to

show that |Aπ(t)| = ON(t) for each π ∈ P , in dimensions d ≥ 3 when μ̌ ∈ L2(R). This
is accomplished in Lemma 15 and Corollary 5, thus completing the proof of the main re-
sult. �

Acknowledgement The author would like to thank Prof. Ira W. Herbst for suggesting the problem, for his
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Appendix A: Approximate Identity

Lemma 17 For ε > 0, let φε(κ) :=∑n∈Zd e−iκ·ne−ε‖n‖. Then, {φε} is an approximated iden-
tity such that

lim
ε↓0

∫
Td

ψ(κ)φε(κ) dκ =
∫

Td

ψ(κ)δ(κ) dκ, (A.1)

for any ψ ∈ C∞(Td). Thus,

lim
ε↓0

∑
n∈Zd

e−iκ·ne−ε‖n‖ = δ(κ), (A.2)

in the sense of distributions. Here, κ ∈ T
d , and the Dirac delta function is thought of as

having a period 2π .
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Proof Let ψ ∈ C∞(Td). Then,

lim
ε↓0

∫
Td

ψ(κ)
∑
n∈Zd

e−iκ·ne−ε‖n‖ dκ = lim
ε↓0

∑
n∈Zd

e−ε‖n‖ψ̌(n)

=
∑
n∈Zd

ψ̌(n)

= ψ(0)

=
∫

Td

ψ(κ)δ(κ)dκ. �

Appendix B: Oscillatory Integrals

In this section, we consider an oscillatory integral with two generic phases. Let

I(s, u) :=
∫

Rn

eisφ(x)eiuϕ(x)ψ(x) dx, (B.1)

Π(t) :=
∫ t

0

∫ t

0
I(s, u) dsdu, (B.2)

where φ,ϕ ∈ C∞ are arbitrary and ψ ∈ C∞
c is a cut-off function.

Remark 20 If s = 0, u = 0 or s = u in (B.1), then the integral is reduced to an ordinary
oscillatory integral with one phase, which is very important and much studied due to its
close relation to many problems in mathematics and sciences, see [37, 39] and references
therein. In such a situation, many results are known, see, for example, [10, 20, 31, 37, 40].
Estimating an oscillatory integral with two phases, like that in (B.1), is more technical than
that with one phase because the critical points of sφ(x)+uϕ(x) generally depend on s and u.
To the author’s knowledge, not much work, if any, has been done in this direction before.

Remark 21 For current purposes, it suffices to consider (B.2) and determine sufficient con-
ditions on φ and ϕ such that |Π(t)| ≤ ct . In [39], the author obtains some general results
by applying the Weierstrass Preparation theorem when φ and ϕ are analytic and at least
one of ∇φ,∇ϕ does not vanish, and by applying the Splitting lemma [5] when φ and ϕ

are C∞, and their Hessian matrices satisfy certain rank conditions. However, for Aπ(t) and
Γπ(t), the phases f1(N, ζ 1) and g1(N, ζ 1) obtained after K̃π (ζ �,1) is integrated out do not
always satisfy such conditions because they can vanish identically, see Lemma 10. Even
when f1(N, ζ 1) and g1(N, ζ 1) do not vanish identically, they and all of their first and sec-
ond derivatives can vanish at the same point, see Example 4.3.

Lemma 18 [37] Let ψ be a smooth function supported in the unit ball of R
n, and φ be a

real-valued function on R
n. Suppose that, for some multi-index α with |α| = k ≥ 1, |∂α

x φ| ≥ 1
throughout the support of ψ . Then,

∣∣∣
∫

Rn

eisφ(x)ψ(x) dx
∣∣∣≤ Ck(φ)

(‖ψ‖∞ + ‖∇ψ‖1
)
s−1/k, (B.3)

where the constant Ck(φ) is independent of ψ and s, and remains bounded as long as the
Ck+1-norm of φ remains bounded.
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Proof The proof is given in [37] (Proposition VIII.5). �

B.1 Oscillatory Integral with Two Phases

Consider a special case of Π(t) in (B.2) with I(s, u) =∏d

l=1 Il(s, u), where

Il(s, u) :=
∫

Rn

eisφ(x)eiuϕ(x)ψl(x) dx, (B.4)

in which ψl is a cut-off function for each l = 1, . . . , d and at our disposal. Put s = tw,
u = tv. Then,

Π(t) :=
∫ t

0

∫ t

0
I(s, u) dsdu = t2

∫ 1

0

∫ 1

0

d∏
l=1

Il(wt, vt) dwdv. (B.5)

It suffices to first estimate Il(wt, vt) for each l = 1, . . . , d , and then integrate with respect
to w and v to obtain an upper bound for Π(t).

Let F : R
n × [0,1] × [0,1] → R be defined as F(x,w, v) := wφ(x) + vϕ(x), where φ

and ϕ are smooth functions. (Note that the phases in our problem are analytic.) Then,

Il(wt, vt) =
∫

Rn

eitF (x,w,v)ψl(x) dnx. (B.6)

Define

‖F‖•
Ck+1 := sup

(w,v)∈[0,1]×[0,1]
‖F(·,w, v)‖Ck+1 ,

where ‖F(·,w, v)‖Ck+1 denotes the Ck+1-norm of F(x,w, v) with respect to x for fixed
(w,v) ∈ [0,1] × [0,1]. It is clear that ‖F‖•

Ck+1 ≤ ‖φ‖Ck+1 + ‖ϕ‖Ck+1 .

Lemma 19 Consider (B.6). Let ψl be a smooth function supported in the unit ball of R
n. If

there exists a multi-index α with |α| ≥ 1 such that |∂α
x F(x,w, v)| ≥ δw > 0 on the support

of ψl , then

|Il(wt, vt)| ≤ Cα

(‖ψl‖∞ + ‖∇ψl‖1

)
(δwt)−1/|α|. (B.7)

Similarly, if there exists a multi-index β with |β| ≥ 1 such that |∂β
x F(x,w, v)| ≥ δv > 0 on

the support of ψl , then

|Il(wt, vt)| ≤ Dβ

(‖ψl‖∞ + ‖∇ψl‖1
)
(δvt)−1/|β|. (B.8)

Here, the constants Cα and Dβ are independent of w,v, and t , and remain finite as long as
‖F‖•

C|α|+1 and ‖F‖•
C|β|+1 remain finite on the support of ψl .

Proof Apply Lemma 18. �

Remark 22 If ψl is supported in any compact set of R
n and |∂α

x F(x,w, v)| ≥ δw > 0 (resp.
|∂β

x F(x,w, v)| ≥ δv > 0) on its support, then Lemma 19 also applies by rescaling and trans-
lating ψl , which do not affect the decay estimates (δwt)−1/|α| (resp. (δvt)−1/|β|).
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Corollary 6 If (B.7) and (B.8) hold, then

∣∣Il(wt, vt)
∣∣≤ El t

−1/|β|+ϑ(1/|β|−1/|α|)w−ϑ/|α|v−(1−ϑ)/|β|, (B.9)

for any ϑ ∈ [0,1], where El is independent of w,v, and t , and remains finite as long as
‖F‖•

C|α|+1 and ‖F‖•
C|β|+1 remain finite.

Consequently, an upper bound on |I(tw, tv)| =∏d

l=1 |Il(s, u)| is given by the product
of the bound in (B.9). In our problem, we note that all factors Il(wt, vt) in I(tw, tv) :=∏d

l=1 Il(wt, vt) have identical phases but may have different functions in the integrand, play-
ing a similar role as that of ψl , see Lemma 8. This is in accordance with the definitions of
Ξπ(s,u) and Λπ(s,u) in (3.50) and (3.51). When |α| = |β| = k, then

∣∣I(tw, tv)
∣∣≤ Ct−d/kw−dϑ/kv−d(1−ϑ)/k, (B.10)

for some constant C > 0 independent of t,w, and v.

Corollary 7 Suppose I(wt, vt) satisfies (B.10). Then, for large t ,

|Π(t)| =

⎧⎪⎨
⎪⎩

O(t2− d
k ) if d < 2k,

O((ln t)2) if d = 2k,

O(1) if d ≥ 2k.

(B.11)

Proof If d/2k < 1, we choose ϑ = 1/2 in (B.10) so that

γ :=
∫ 1

0

∫ 1

0
w−d/2kv−d/2k dwdv < ∞.

Thus, by (B.5) and (B.10),

|Π(t)| ≤ γCt2−d/k,

which proves the claimed statement for d < 2k.
For d ≥ 2k, we also notice that |I(tw, tv)| ≤ c for some constant c > 0 independent of

w,v and t . Then, for any 0 < η < 1, we can write

∫ 1

0

∫ 1

0
I(tw, tv) dwdv =

∫ η

0

∫ η

0
I(tw, tv) dwdv +

∫ η

0

∫ 1

η

I(tw, tv) dvdw

+
∫ η

0

∫ 1

η

I(tw, tv) dwdv +
∫ 1

η

∫ 1

η

I(tw, tv) dwdv.

The first integral is bounded by cη2. By interchanging the roles of ϑ and 1 − ϑ in (B.10),
the second and third integrals can be estimated by the same bound. By (B.10) and choosing
ϑ = 1,

∣∣∣
∫ η

0

∫ 1

η

I(tw, tv) dwdv

∣∣∣≤ Ct−d/k

∫ η

0

∫ 1

η

w−dϑ/kv−d(1−ϑ)/k dwdv

≤ C1t
−d/kη2−d/k.
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Moreover, with ϑ = 1/2,

∣∣∣
∫ 1

η

∫ 1

η

I(tw, tv) dudv

∣∣∣≤ Ct−d/k

∫ 1

η

∫ 1

η

w−d/2kv−d/2k dwdv

≤ C2t
−d/k

{
(lnη)2 if d = 2k,

η2−d/k if d > 2k.

All estimates hold for any 0 < η < 1. Thus, for t large, optimizing over η yields

∣∣∣
∫ 1

0

∫ 1

0
I(tw, tv) dwdv

∣∣∣≤ C3

{
t−2(ln(t))2 if d = 2k,

t−2 if d > 2k,

for some C3 > 0. Together with (B.5), this completes the proof of the corollary. �
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